Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,34 @@
|
|
1 |
-
import torch
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import soundfile as sf
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
MODEL_PATH = 'best_model.pth'
|
13 |
-
CONFIG_PATH = 'config.json'
|
14 |
|
15 |
-
# Load configuration and model
|
16 |
-
def load_model(model_path, config_path):
|
17 |
-
# Load the model configuration
|
18 |
-
with open(config_path, 'r') as f:
|
19 |
-
config = json.load(f)
|
20 |
-
|
21 |
-
# Initialize the Glow-TTS model
|
22 |
-
model = GlowTTS(config)
|
23 |
-
|
24 |
-
# Load the trained model weights
|
25 |
-
model.load_state_dict(torch.load(model_path))
|
26 |
-
model.eval()
|
27 |
-
|
28 |
-
return model
|
29 |
-
|
30 |
-
# Load the model
|
31 |
-
model = load_model(MODEL_PATH, CONFIG_PATH)
|
32 |
-
|
33 |
-
# Define the function to generate speech
|
34 |
def generate_speech(text):
|
35 |
-
#
|
36 |
-
|
37 |
-
inputs = torch.tensor(sequence).unsqueeze(0) # Add batch dimension
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# Convert mel spectrogram to waveform
|
44 |
-
# This step might require a vocoder (e.g., HiFi-GAN) to convert mel spectrograms to audio
|
45 |
-
audio_waveform = mel_to_audio(mel_output) # Replace with actual conversion if needed
|
46 |
-
|
47 |
-
# Save the waveform to a temporary file
|
48 |
-
temp_file = 'temp.wav'
|
49 |
-
sf.write(temp_file, audio_waveform, 22050) # Adjust sample rate if necessary
|
50 |
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
# Define Gradio interface
|
54 |
-
|
55 |
fn=generate_speech,
|
56 |
-
inputs="text",
|
57 |
-
outputs="
|
58 |
-
title="
|
59 |
-
description="Generate speech from text using
|
60 |
)
|
61 |
|
62 |
-
# Launch the Gradio interface
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from your_model_module import YourTTSModel, YourTTSProcessor # Replace with your actual imports
|
|
|
4 |
|
5 |
+
# Load the model and processor
|
6 |
+
model = YourTTSModel.from_pretrained("config.json")
|
7 |
+
model.load_state_dict(torch.load("best_model.pth"))
|
8 |
+
model.eval() # Set the model to evaluation mode
|
9 |
|
10 |
+
processor = YourTTSProcessor.from_pretrained("config.json")
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def generate_speech(text):
|
13 |
+
# Process the input text
|
14 |
+
inputs = processor(text, return_tensors="pt")
|
|
|
15 |
|
16 |
+
# Generate speech using the model
|
17 |
+
with torch.no_grad(): # No need to compute gradients
|
18 |
+
outputs = model.generate(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Process the output to an audio format
|
21 |
+
audio = outputs.squeeze().numpy() # Adjust this based on how your model outputs data
|
22 |
+
return audio
|
23 |
|
24 |
+
# Define the Gradio interface
|
25 |
+
iface = gr.Interface(
|
26 |
fn=generate_speech,
|
27 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
|
28 |
+
outputs=gr.Audio(type="numpy"),
|
29 |
+
title="Text-to-Speech with Coqui TTS",
|
30 |
+
description="Generate speech from text using a custom Coqui TTS model."
|
31 |
)
|
32 |
|
|
|
33 |
if __name__ == "__main__":
|
34 |
+
iface.launch()
|