File size: 6,475 Bytes
8e2b48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import numpy as np
import random
import time
import os
import shutil
import codecs
# How to RUN code ==> gradio gradio_llm_example.py 


# Define text and title information 
title1 = "##  </br> </br> </br> 🤗💬 QA App"

title2 = " ##  </br> </br> </br> Gradio QA Bot"

intro = """ Welcome! This is not just any bot, it's a special one equipped with state-of-the-art natural language processing capabilities, and ready to answer your queries.


    Ready to explore? Let's get started!
  
    
    * Step 1: Upload a PDF document.
    * Step 2: Type in a question related to your document's content.
    * Step 3: Get your answer!
 
    
    Push clear cache before uploading a new doc!

    
    """

about = """ 
    ## </br> About
    This app is an LLM-powered chatbot built using:
    - [Streamlit](<https://streamlit.io/>)
    - [HugChat](<https://github.com/Soulter/hugging-chat-api>)
    - Chat Model = llama2-chat-hf 7B 
    - Retreiver model = all-MiniLM-L6-v2

    </br> 
    💡 Note: No API key required!
    
     </br> 
    Made with ❤️ by us
     """


# Define theme ==> see gr.themes.builder()
theme = gr.themes.Soft(
    primary_hue="emerald",
    secondary_hue="emerald",
    neutral_hue="slate",
).set(
    body_background_fill_dark='*primary_50',
    shadow_drop='*shadow_spread',
    button_border_width='*block_border_width',
    button_border_width_dark='*block_label_border_width'
)


def upload_file(files_obj):
    """ Upload several files from drag and drop, and save them in local temp folder
    files_obj (type:list) : list of tempfile._TemporaryFileWrapper 
    return checkbox to display uploaded documents """
    # Create local copy
    temp_file_path = "./temp"
    if not os.path.exists(temp_file_path):
        os.makedirs(temp_file_path)
    # Save each file among list of given files
    file_name_list = list()
    for file_obj in files_obj :
        file_name = os.path.basename(file_obj.name)
        file_name_list.append(file_name)
        shutil.copyfile(file_obj.name, os.path.join(temp_file_path, file_name))
    return {uploaded_check : gr.Radio(choices=file_name_list, visible=True),
            choose_btn : gr.Button(value="Choose", visible=True)}


def read_content(file_name):
    print(file_name, type(file_name))
    temp_file_path = "./temp"
    file_path = os.path.join(temp_file_path, file_name)
    with open(file_path, "rb") as file:
        try:
            content = file.read()
            print(content)
            print(codecs.decode(content, 'utf-8'))
            return {error_box: gr.Textbox(value=f"File ready to be used. \n You can ask a question about the uploaded PDF document.", visible=True)}
        except Exception as e:
            print(f"Error occurred while writing the file: {e}")
            return {error_box: gr.Textbox(value=f"Error occurred while writing the file: {e}", visible=True)}


def respond(message, chat_history, 
            language_choice, max_length, temperature,
            num_return_sequences, top_p, no_repeat_ngram_size):
        #No LLM here, just respond with a random pre-made message
        if content == "":
            bot_message = f"j'ai {max_length}" + random.choice(["Tell me more about it", 
                                            "Cool, but I'm not interested", 
                                            "Hmmmm, ok then"]) 
        else:
            bot_message = " j'ai besoin d'un modèle pour lire le {content[:3]}"
        chat_history.append((message, bot_message))
        return "", chat_history



# Layout
with gr.Blocks(theme=gr.themes.Soft()) as gradioApp:
    with gr.Row():
        with gr.Column(scale=1, min_width=100):
            logo_gr = gr.Markdown(""" <img src="file/logo_neovision.png" alt="logo" style="width:400px;"/>""") 
            # gr.Image("./logo_neovision.png")
            about_gr = gr.Markdown(about)   
            
        with gr.Column(scale=2, min_width=500):
            title1_gr= gr.Markdown(title1)
            intro_gr = gr.Markdown(intro)

            #  Upload several documents
            content = ""
            upload_button = gr.UploadButton("Browse files", label="Drag and drop your documents here", 
                                            size="lg", scale=0, min_width=100,
                                            file_types=["pdf"], file_count="multiple")
            uploaded_check = gr.Radio(label="Uploaded documents", visible=False,
                                      info="Do you want to use a supporting document?")
            choose_btn = gr.Button(value="Choose", visible=False)
            upload_button.upload(upload_file, upload_button, [uploaded_check, choose_btn])

            # Read only one document
            error_box = gr.Textbox(label="Reading files... ", visible=False)
            choose_btn.click(read_content, inputs=uploaded_check, outputs=error_box)

            # Select advanced options
            gr.Markdown(""" ## Toolbox """)
            with gr.Accordion(label="Select advanced options",open=False):
                language_choice = gr.Dropdown(["English", "French"], label="Language", info="Choose your language")
                max_length = gr.Slider(label="Token length", minimum=1, maximum=100, value=50, step=1)
                temperature= gr.Slider(label="Temperature", minimum=0.1, maximum=1, value=0.8, step=0.1)
                num_return_sequences= gr.Slider(label="Temperature", minimum=0.1, maximum=50, value=1, step=0.1)
                top_p= gr.Slider(label="Temperature", minimum=0.1, maximum=1, value=0.8, step=0.1)
                no_repeat_ngram_size= gr.Slider(label="Temperature", minimum=0.1, maximum=1, value=3, step=0.1)


        # Chat
        with gr.Column(scale=2, min_width=600):
            title2_gr = gr.Markdown(title2)
            chatbot = gr.Chatbot(label="Bot", height=500) 
            msg = gr.Textbox(label="User", placeholder="Ask any question.")
            chatbot_btn = gr.Button("Submit")
            chatbot_btn.click(respond, inputs=[msg, chatbot, 
                                               language_choice, max_length, temperature,
                                               num_return_sequences, top_p, no_repeat_ngram_size],
                                               outputs=[msg, chatbot])
            clear = gr.ClearButton(components=[msg, chatbot], value="Clear console")


gr.close_all()
gradioApp.launch(share=True, enable_queue=True)