Spaces:
Runtime error
Runtime error
up
Browse filesmodel
- gradio_llm_example.py +74 -34
gradio_llm_example.py
CHANGED
@@ -1,13 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
import time
|
|
|
5 |
import os
|
6 |
import shutil
|
7 |
-
import codecs
|
8 |
# How to RUN code ==> gradio gradio_llm_example.py
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Define text and title information
|
12 |
title1 = "## </br> </br> </br> 🤗💬 QA App"
|
13 |
|
@@ -72,68 +81,99 @@ def upload_file(files_obj):
|
|
72 |
file_name = os.path.basename(file_obj.name)
|
73 |
file_name_list.append(file_name)
|
74 |
shutil.copyfile(file_obj.name, os.path.join(temp_file_path, file_name))
|
75 |
-
return
|
|
|
76 |
choose_btn : gr.Button(value="Choose", visible=True)}
|
77 |
|
78 |
|
79 |
-
def read_content(content,
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
def my_model(message, chat_history, content_var,
|
96 |
language_choice, model_choice, max_length, temperature,
|
97 |
num_return_sequences, top_p, no_repeat_ngram_size):
|
98 |
#No LLM here, just respond with a random pre-made message
|
99 |
-
if content_var ==
|
100 |
bot_message = f"Pas de context : {content_var}" + random.choice(["Tell me more about it",
|
101 |
"Cool, but I'm not interested",
|
102 |
"Hmmmm, ok then"])
|
103 |
else:
|
104 |
bot_message = f" Voici le context {content_var}"
|
105 |
chat_history.append((message, bot_message))
|
|
|
106 |
return "", chat_history
|
107 |
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
|
|
111 |
with gr.Blocks(theme=gr.themes.Soft()) as gradioApp:
|
|
|
|
|
|
|
|
|
|
|
112 |
with gr.Row():
|
|
|
113 |
with gr.Column(scale=1, min_width=100):
|
114 |
-
logo_gr = gr.Markdown(""" <img src="file/logo_neovision.png" alt="logo" style="width:400px;"/>""")
|
115 |
# gr.Image("./logo_neovision.png")
|
|
|
116 |
about_gr = gr.Markdown(about)
|
117 |
-
|
|
|
118 |
with gr.Column(scale=2, min_width=500):
|
119 |
title1_gr= gr.Markdown(title1)
|
120 |
intro_gr = gr.Markdown(intro)
|
121 |
|
122 |
# Upload several documents
|
123 |
-
content_var = gr.State("")
|
124 |
upload_button = gr.UploadButton("Browse files", label="Drag and drop your documents here",
|
125 |
size="lg", scale=0, min_width=100,
|
126 |
file_types=["pdf"], file_count="multiple")
|
127 |
-
|
|
|
128 |
info="Do you want to use a supporting document?")
|
129 |
choose_btn = gr.Button(value="Choose", visible=False)
|
|
|
130 |
upload_button.upload(upload_file, upload_button, [uploaded_check, choose_btn])
|
131 |
|
132 |
# Read only one document
|
133 |
-
error_box = gr.Textbox(label="Reading files... ", visible=False)
|
134 |
choose_btn.click(read_content, inputs=[content_var, uploaded_check], outputs=[content_var, error_box])
|
135 |
|
136 |
-
# Select advanced options
|
137 |
gr.Markdown(""" ## Toolbox """)
|
138 |
with gr.Accordion(label="Select advanced options",open=False):
|
139 |
model_choice = gr.Dropdown(["LLM", "Other"], label="Model", info="Choose your AI model")
|
@@ -145,21 +185,21 @@ with gr.Blocks(theme=gr.themes.Soft()) as gradioApp:
|
|
145 |
no_repeat_ngram_size= gr.Slider(label="repeat", minimum=0.1, maximum=1, value=3, step=0.1)
|
146 |
|
147 |
|
148 |
-
# Chat
|
149 |
with gr.Column(scale=2, min_width=600):
|
150 |
title2_gr = gr.Markdown(title2)
|
151 |
-
chatbot = gr.Chatbot(label="Bot", height=500
|
152 |
msg = gr.Textbox(label="User", placeholder="Ask any question.")
|
153 |
-
|
154 |
-
msg.submit(my_model,
|
155 |
inputs=[msg, chatbot, content_var,
|
156 |
language_choice, model_choice, max_length, temperature,
|
157 |
num_return_sequences, top_p, no_repeat_ngram_size],
|
158 |
-
outputs=[msg, chatbot])
|
159 |
clear = gr.ClearButton(components=[msg, chatbot], value="Clear console")
|
160 |
|
161 |
|
162 |
gr.close_all()
|
163 |
gradioApp.queue()
|
164 |
gradioApp.launch(share=True, auth=("neovision", "gradio2023"))
|
165 |
-
#auth=("neovision", "gradio2023")
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import time
|
3 |
+
import random
|
4 |
import os
|
5 |
import shutil
|
|
|
6 |
# How to RUN code ==> gradio gradio_llm_example.py
|
7 |
|
8 |
|
9 |
+
def load_llm_model(model: str = "google/flan-t5-large") -> HuggingFacePipeline:
|
10 |
+
llm = HuggingFacePipeline.from_model_id(
|
11 |
+
model_id=model,
|
12 |
+
task="text2text-generation",
|
13 |
+
model_kwargs={"max_length": 1500, "load_in_8bit": True},
|
14 |
+
)
|
15 |
+
return llm
|
16 |
+
|
17 |
+
from langchain import HuggingFacePipeline
|
18 |
+
|
19 |
+
|
20 |
# Define text and title information
|
21 |
title1 = "## </br> </br> </br> 🤗💬 QA App"
|
22 |
|
|
|
81 |
file_name = os.path.basename(file_obj.name)
|
82 |
file_name_list.append(file_name)
|
83 |
shutil.copyfile(file_obj.name, os.path.join(temp_file_path, file_name))
|
84 |
+
# return visible button for next selection
|
85 |
+
return {uploaded_check : gr.CheckboxGroup(choices=file_name_list, visible=True),
|
86 |
choose_btn : gr.Button(value="Choose", visible=True)}
|
87 |
|
88 |
|
89 |
+
def read_content(content, files_name):
|
90 |
+
""" Read and update the content variable (state) according to the several files_names to read from temp folder
|
91 |
+
return updated content_var (type : list of str)
|
92 |
+
return visible error_box to display logs error """
|
93 |
+
content_list = list()
|
94 |
+
text_list = list()
|
95 |
+
# Parse one or several docs among the selected ones
|
96 |
+
for file_name in files_name :
|
97 |
+
print(file_name, type(file_name))
|
98 |
+
temp_file_path = "./temp"
|
99 |
+
file_path = os.path.join(temp_file_path, file_name)
|
100 |
+
# Read doc
|
101 |
+
with open(file_path, "rb") as file:
|
102 |
+
try:
|
103 |
+
content = file.read()
|
104 |
+
#### YOUR FONCTION FOR CONTENT ==> must be str
|
105 |
+
my_content = str(content[:10])
|
106 |
+
content_list.append(my_content)
|
107 |
+
text_list.append(f"File {file_name} ready to be used. \n")
|
108 |
+
print(content)
|
109 |
+
except Exception as e:
|
110 |
+
print(f"Error occurred while writing the file: {e}")
|
111 |
+
text_list.append(f"Error occurred while writing the file {file_name}: {e}")
|
112 |
+
return {content_var : content_list,
|
113 |
+
error_box : gr.Textbox(value=f"""{" and ".join(text_list)} \n You can ask a question about the uploaded PDF document.""", visible=True)}
|
114 |
+
|
115 |
+
|
116 |
+
### YOUR model using the same inputand returning output
|
117 |
def my_model(message, chat_history, content_var,
|
118 |
language_choice, model_choice, max_length, temperature,
|
119 |
num_return_sequences, top_p, no_repeat_ngram_size):
|
120 |
#No LLM here, just respond with a random pre-made message
|
121 |
+
if content_var == []:
|
122 |
bot_message = f"Pas de context : {content_var}" + random.choice(["Tell me more about it",
|
123 |
"Cool, but I'm not interested",
|
124 |
"Hmmmm, ok then"])
|
125 |
else:
|
126 |
bot_message = f" Voici le context {content_var}"
|
127 |
chat_history.append((message, bot_message))
|
128 |
+
|
129 |
return "", chat_history
|
130 |
|
131 |
|
132 |
+
def queue_bot(history):
|
133 |
+
""" For in progress display during chat """
|
134 |
+
bot_message = history[-1][1]
|
135 |
+
history[-1][1] = ""
|
136 |
+
for character in bot_message:
|
137 |
+
history[-1][1] += character
|
138 |
+
time.sleep(0.05)
|
139 |
+
yield history
|
140 |
|
141 |
+
|
142 |
+
# App
|
143 |
with gr.Blocks(theme=gr.themes.Soft()) as gradioApp:
|
144 |
+
|
145 |
+
# Initialize the document context variable as empty without any drag and drop
|
146 |
+
content_var = gr.State([])
|
147 |
+
|
148 |
+
# Layout
|
149 |
with gr.Row():
|
150 |
+
# Row 1 : About
|
151 |
with gr.Column(scale=1, min_width=100):
|
|
|
152 |
# gr.Image("./logo_neovision.png")
|
153 |
+
logo_gr = gr.Markdown(""" <img src="file/logo_neovision.png" alt="logo" style="width:400px;"/>""")
|
154 |
about_gr = gr.Markdown(about)
|
155 |
+
|
156 |
+
# Row 2 : Param
|
157 |
with gr.Column(scale=2, min_width=500):
|
158 |
title1_gr= gr.Markdown(title1)
|
159 |
intro_gr = gr.Markdown(intro)
|
160 |
|
161 |
# Upload several documents
|
|
|
162 |
upload_button = gr.UploadButton("Browse files", label="Drag and drop your documents here",
|
163 |
size="lg", scale=0, min_width=100,
|
164 |
file_types=["pdf"], file_count="multiple")
|
165 |
+
# invisible button while no documents uploaded
|
166 |
+
uploaded_check = gr.CheckboxGroup(label="Uploaded documents", visible=False,
|
167 |
info="Do you want to use a supporting document?")
|
168 |
choose_btn = gr.Button(value="Choose", visible=False)
|
169 |
+
# uploading one or several docs and display other buttons
|
170 |
upload_button.upload(upload_file, upload_button, [uploaded_check, choose_btn])
|
171 |
|
172 |
# Read only one document
|
173 |
+
error_box = gr.Textbox(label="Reading files... ", visible=False) # display only when ready or error
|
174 |
choose_btn.click(read_content, inputs=[content_var, uploaded_check], outputs=[content_var, error_box])
|
175 |
|
176 |
+
# Select advanced options, to be given as input for your model
|
177 |
gr.Markdown(""" ## Toolbox """)
|
178 |
with gr.Accordion(label="Select advanced options",open=False):
|
179 |
model_choice = gr.Dropdown(["LLM", "Other"], label="Model", info="Choose your AI model")
|
|
|
185 |
no_repeat_ngram_size= gr.Slider(label="repeat", minimum=0.1, maximum=1, value=3, step=0.1)
|
186 |
|
187 |
|
188 |
+
# Row 3 : Chat
|
189 |
with gr.Column(scale=2, min_width=600):
|
190 |
title2_gr = gr.Markdown(title2)
|
191 |
+
chatbot = gr.Chatbot(label="Bot", height=500)
|
192 |
msg = gr.Textbox(label="User", placeholder="Ask any question.")
|
193 |
+
### YOUR MODEL TO ADAPT
|
194 |
+
msg.submit(my_model,
|
195 |
inputs=[msg, chatbot, content_var,
|
196 |
language_choice, model_choice, max_length, temperature,
|
197 |
num_return_sequences, top_p, no_repeat_ngram_size],
|
198 |
+
outputs=[msg, chatbot]).then(queue_bot, chatbot, chatbot)
|
199 |
clear = gr.ClearButton(components=[msg, chatbot], value="Clear console")
|
200 |
|
201 |
|
202 |
gr.close_all()
|
203 |
gradioApp.queue()
|
204 |
gradioApp.launch(share=True, auth=("neovision", "gradio2023"))
|
205 |
+
#auth=("neovision", "gradio2023") to be placed inside the launch parameters
|