File size: 7,006 Bytes
25639d3 0cd61fa 4567788 25639d3 67132e8 25639d3 bfbc244 25639d3 6b87f6b 25639d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import sys, os
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import soundfile as sf
from datetime import datetime
import pytz
net_g = None
models = {
"V1": "./MODELS/v1-1100.pth",
"V2": "./MODELS/v2_3000.pth",
"V3":"./MODELS/v3_8000.pth"
}
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
with torch.no_grad():
x_tst=phones.to(device).unsqueeze(0)
tones=tones.to(device).unsqueeze(0)
lang_ids=lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
sf.write("tmp.wav", audio, 44100)
return audio
def convert_wav_to_mp3(wav_file):
tz = pytz.timezone('Asia/Shanghai')
now = datetime.now(tz).strftime('%m%d%H%M%S')
os.makedirs('out', exist_ok=True)
output_path_mp3 = os.path.join('out', f"{now}.mp3")
renamed_input_path = os.path.join('in', f"in.wav")
os.makedirs('in', exist_ok=True)
os.rename(wav_file.name, renamed_input_path)
command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3]
os.system(" ".join(command))
return output_path_mp3
def tts_generator(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model):
global net_g,speakers
model_path = models[model]
net_g, _, _, _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
text = text[:500]
try:
with torch.no_grad():
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model)
with open('tmp.wav', 'rb') as wav_file:
mp3 = convert_wav_to_mp3(wav_file)
return "生成语音成功", (hps.data.sampling_rate, audio), mp3
except Exception as e:
return "生成语音失败:" + str(e), None, None
if __name__ == "__main__":
hps = utils.get_hparams_from_file("./configs/config.json")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).to(device)
_ = net_g.eval()
speaker_ids = hps.data.spk2id
speaker = list(speaker_ids.keys())[0]
theme='remilia/Ghostly'
with gr.Blocks(theme=theme) as app:
with gr.Row():
with gr.Column():
gr.Markdown("""**测试用**""")
text = gr.TextArea(label="✨输入需要生成语音的文字", placeholder="输入文字",
value="漩涡帮可不是吃素的,我是碰巧路过听人说,他们要整一个全金属和尚",
info="使用huggingface的免费CPU进行推理,因此速度不快,最多生成500字,多余的会被忽略。字数越多越耗时,请耐心等待,只会说中文",
)
model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='📢音声模型')
with gr.Accordion(label="💡展开设置生成参数", open=False):
sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比',info='可控制一定程度的语调变化')
noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化')
noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度')
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度',info='数值越大,语速越慢')
btn = gr.Button("🪄生成", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="🔊试听")
MP3_output = gr.File(label="💾下载")
text_output = gr.Textbox(label="❗调试信息")
gr.Markdown("""
""")
btn.click(
tts_generator,
inputs=[text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model],
outputs=[text_output, audio_output,MP3_output]
)
gr.Examples(
fn=tts_generator,
examples=[
[
"我?当警察,上次我说这话的时候才六岁"
],
[
"但对我来说,回忆中的夜之城反而笼罩在一种暖暖淡淡的,有奶油质感的颜色中。"
],
[
"与我打卡过的北京其他几家社区图书馆一样,环境那叫一个整洁优雅,工作日那叫一个人烟稀少。书虽不多,但好书不少,而且崭新得烫手。"
],
[
"《神笔狗良》冒险解谜涂色游戏,对小朋友来说或许有点幼稚但对我来说刚刚好!"
],
[
"不知道有没有使用过不同读取速度内存卡的姐妹,游戏加载和运行速度会差很多吗?"
]
,
],
inputs=[text],
)
#gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLM" /></div>''')
app.launch(show_error=True)
|