File size: 7,006 Bytes
25639d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd61fa
 
4567788
25639d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67132e8
25639d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfbc244
25639d3
6b87f6b
25639d3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import sys, os
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import soundfile as sf
from datetime import datetime
import pytz


net_g = None
models = {
    "V1": "./MODELS/v1-1100.pth",
    "V2": "./MODELS/v2_3000.pth",
    "V3":"./MODELS/v3_8000.pth"
      
}

def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language

def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir):
    global net_g
    bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
    with torch.no_grad():
        x_tst=phones.to(device).unsqueeze(0)
        tones=tones.to(device).unsqueeze(0)
        lang_ids=lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        sf.write("tmp.wav", audio, 44100)
        return audio

def convert_wav_to_mp3(wav_file):
    tz = pytz.timezone('Asia/Shanghai')
    now = datetime.now(tz).strftime('%m%d%H%M%S')
    os.makedirs('out', exist_ok=True)  
    output_path_mp3 = os.path.join('out', f"{now}.mp3")

    renamed_input_path = os.path.join('in', f"in.wav")
    os.makedirs('in', exist_ok=True)
    os.rename(wav_file.name, renamed_input_path)
    command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3]
    os.system(" ".join(command))
    return output_path_mp3
    
def tts_generator(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model):
    global net_g,speakers
    model_path = models[model]
    net_g, _, _, _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    text = text[:500]
    try:
        with torch.no_grad():
            audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model)
        with open('tmp.wav', 'rb') as wav_file:
            mp3 = convert_wav_to_mp3(wav_file)  
        return "生成语音成功", (hps.data.sampling_rate, audio), mp3
    except Exception as e:
        return "生成语音失败:" + str(e), None, None


if __name__ == "__main__":
    hps = utils.get_hparams_from_file("./configs/config.json")
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
   
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model).to(device)
    _ = net_g.eval()

    speaker_ids = hps.data.spk2id
    speaker = list(speaker_ids.keys())[0]
    theme='remilia/Ghostly'
    
    with gr.Blocks(theme=theme) as app:
        with gr.Row():
            with gr.Column():

                gr.Markdown("""**测试用**""")
                text = gr.TextArea(label="✨输入需要生成语音的文字", placeholder="输入文字",
                                value="漩涡帮可不是吃素的,我是碰巧路过听人说,他们要整一个全金属和尚",
                                info="使用huggingface的免费CPU进行推理,因此速度不快,最多生成500字,多余的会被忽略。字数越多越耗时,请耐心等待,只会说中文",
                                  )
                model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='📢音声模型')
                with gr.Accordion(label="💡展开设置生成参数", open=False):
                    sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比',info='可控制一定程度的语调变化')
                    noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化')
                    noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度')
                    length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度',info='数值越大,语速越慢')
                btn = gr.Button("🪄生成", variant="primary")
            with gr.Column():
                audio_output = gr.Audio(label="🔊试听")
                MP3_output = gr.File(label="💾下载")
                text_output = gr.Textbox(label="❗调试信息")
                gr.Markdown("""
                
                """)
        btn.click(
                tts_generator,
                inputs=[text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model],
                outputs=[text_output, audio_output,MP3_output]
                )
        gr.Examples(
                fn=tts_generator,
                examples=[
                [
                    "我?当警察,上次我说这话的时候才六岁"
                ],
                [
                    "但对我来说,回忆中的夜之城反而笼罩在一种暖暖淡淡的,有奶油质感的颜色中。"
                ],
                [
                    "与我打卡过的北京其他几家社区图书馆一样,环境那叫一个整洁优雅,工作日那叫一个人烟稀少。书虽不多,但好书不少,而且崭新得烫手。"
                ],
                [
                    "《神笔狗良》冒险解谜涂色游戏,对小朋友来说或许有点幼稚但对我来说刚刚好!"
                ],
                 [
                     "不知道有没有使用过不同读取速度内存卡的姐妹,游戏加载和运行速度会差很多吗?"
                 ]
                ,
            ],
            inputs=[text],
            
        )
        #gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLM" /></div>''')
    app.launch(show_error=True)