|
from flask import Flask, request, Response |
|
from io import BytesIO |
|
import torch |
|
from av import open as avopen |
|
|
|
import commons |
|
import utils |
|
from models import SynthesizerTrn |
|
from text.symbols import symbols |
|
from text import cleaned_text_to_sequence, get_bert |
|
from text.cleaner import clean_text |
|
from scipy.io import wavfile |
|
|
|
|
|
app = Flask(__name__) |
|
app.config['JSON_AS_ASCII'] = False |
|
def get_text(text, language_str, hps): |
|
norm_text, phone, tone, word2ph = clean_text(text, language_str) |
|
print([f"{p}{t}" for p, t in zip(phone, tone)]) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert = get_bert(norm_text, word2ph, language_str) |
|
|
|
assert bert.shape[-1] == len(phone) |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
|
|
return bert, phone, tone, language |
|
|
|
def infer(text, sdp_ratio, noise_scale, noise_scale_w,length_scale,sid): |
|
bert, phones, tones, lang_ids = get_text(text,"ZH", hps,) |
|
with torch.no_grad(): |
|
x_tst=phones.to(dev).unsqueeze(0) |
|
tones=tones.to(dev).unsqueeze(0) |
|
lang_ids=lang_ids.to(dev).unsqueeze(0) |
|
bert = bert.to(dev).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(dev) |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(dev) |
|
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids,bert, sdp_ratio=sdp_ratio |
|
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy() |
|
return audio |
|
|
|
def replace_punctuation(text, i=2): |
|
punctuation = ",。?!" |
|
for char in punctuation: |
|
text = text.replace(char, char * i) |
|
return text |
|
|
|
def wav2(i, o, format): |
|
inp = avopen(i, 'rb') |
|
out = avopen(o, 'wb', format=format) |
|
if format == "ogg": format = "libvorbis" |
|
|
|
ostream = out.add_stream(format) |
|
|
|
for frame in inp.decode(audio=0): |
|
for p in ostream.encode(frame): out.mux(p) |
|
|
|
for p in ostream.encode(None): out.mux(p) |
|
|
|
out.close() |
|
inp.close() |
|
|
|
|
|
hps = utils.get_hparams_from_file("./configs/config.json") |
|
|
|
dev='cuda' |
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model).to(dev) |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint("logs/G_649000.pth", net_g, None,skip_optimizer=True) |
|
|
|
@app.route("/",methods=['GET','POST']) |
|
def main(): |
|
if request.method == 'GET': |
|
try: |
|
speaker = request.args.get('speaker') |
|
text = request.args.get('text').replace("/n","") |
|
sdp_ratio = float(request.args.get("sdp_ratio", 0.2)) |
|
noise = float(request.args.get("noise", 0.5)) |
|
noisew = float(request.args.get("noisew", 0.6)) |
|
length = float(request.args.get("length", 1.2)) |
|
if length >= 2: |
|
return "Too big length" |
|
if len(text) >=200: |
|
return "Too long text" |
|
fmt = request.args.get("format", "wav") |
|
if None in (speaker, text): |
|
return "Missing Parameter" |
|
if fmt not in ("mp3", "wav", "ogg"): |
|
return "Invalid Format" |
|
except: |
|
return "Invalid Parameter" |
|
|
|
with torch.no_grad(): |
|
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise, noise_scale_w=noisew, length_scale=length, sid=speaker) |
|
|
|
with BytesIO() as wav: |
|
wavfile.write(wav, hps.data.sampling_rate, audio) |
|
torch.cuda.empty_cache() |
|
if fmt == "wav": |
|
return Response(wav.getvalue(), mimetype="audio/wav") |
|
wav.seek(0, 0) |
|
with BytesIO() as ofp: |
|
wav2(wav, ofp, fmt) |
|
return Response( |
|
ofp.getvalue(), |
|
mimetype="audio/mpeg" if fmt == "mp3" else "audio/ogg" |
|
) |
|
|