File size: 954 Bytes
ad52a00
 
 
 
 
 
 
 
 
 
61ea8cf
ad52a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
import torch
from datetime import datetime

# hyperparameters
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
NUM_HEAD = 6
NUM_EMBED = NUM_HEAD * 128
NUM_LAYER = 8
DROPOUT = 0.3
MAX_SEQ_LEN = 4096

def encode(text_seq: str, tokenizer: any) -> torch.Tensor:
    """
    Function to encode input text using a pre-trained tokenizer and vectorized lookups
    """
    # tokenize the input text
    tokens = tokenizer.tokenize(text_seq)
    # convert the tokens to their corresponding ids
    token_indices = tokenizer.convert_tokens_to_ids(tokens)
    token_indices = torch.tensor(token_indices, dtype=torch.long)
    return token_indices


def decode(enc_sec: torch.Tensor, tokenizer: any) -> str:
    """
    Function to decode a sequence of token indices back to a string
    """
    # convert the indices to a list
    enc_sec = enc_sec.tolist()
    # decode the indices to a string
    text = tokenizer.decode(enc_sec)
    return text