import os import torch from datetime import datetime # hyperparameters DEVICE = "cuda" if torch.cuda.is_available() else "cpu" NUM_HEAD = 6 NUM_EMBED = NUM_HEAD * 128 NUM_LAYER = 8 DROPOUT = 0.3 MAX_SEQ_LEN = 4096 def encode(text_seq: str, tokenizer: any) -> torch.Tensor: """ Function to encode input text using a pre-trained tokenizer and vectorized lookups """ # tokenize the input text tokens = tokenizer.tokenize(text_seq) # convert the tokens to their corresponding ids token_indices = tokenizer.convert_tokens_to_ids(tokens) token_indices = torch.tensor(token_indices, dtype=torch.long) return token_indices def decode(enc_sec: torch.Tensor, tokenizer: any) -> str: """ Function to decode a sequence of token indices back to a string """ # convert the indices to a list enc_sec = enc_sec.tolist() # decode the indices to a string text = tokenizer.decode(enc_sec) return text