Spaces:
Sleeping
Sleeping
Commit
·
7d55d92
1
Parent(s):
19e98cb
Initial commit with chatbot script and requirements
Browse files- building_chatbot_ui_with_microsoft_godel_&_gradio.py +74 -0
- readme.md +16 -0
- requierements.txt +4 -0
building_chatbot_ui_with_microsoft_godel_&_gradio.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
GODEL - (Grounded Open
|
7 |
+
Dialogue Language Model https://www.microsoft.com/en-us/research/uploads/prod/2022/05/2206.11309.pdf
|
8 |
+
"""
|
9 |
+
|
10 |
+
! pip install transformers gradio -q
|
11 |
+
|
12 |
+
!pip install huggingface_hub
|
13 |
+
from huggingface_hub import notebook_login
|
14 |
+
|
15 |
+
# Log in to Hugging Face
|
16 |
+
notebook_login()
|
17 |
+
|
18 |
+
"""# Step 1 — Setting up the Chatbot Model - Microsoft phi-3.5"""
|
19 |
+
|
20 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
21 |
+
import torch
|
22 |
+
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/GODEL-v1_1-base-seq2seq")
|
24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/GODEL-v1_1-base-seq2seq")
|
25 |
+
|
26 |
+
"""# Step 2 — Defining a `predict` function with `state` and model prediction"""
|
27 |
+
|
28 |
+
def predict(input, history=[]):
|
29 |
+
|
30 |
+
instruction = 'Instruction: given a dialog context, you need to response empathically'
|
31 |
+
|
32 |
+
knowledge = ' '
|
33 |
+
|
34 |
+
s = list(sum(history, ()))
|
35 |
+
|
36 |
+
s.append(input)
|
37 |
+
|
38 |
+
#print(s)
|
39 |
+
|
40 |
+
dialog = ' EOS ' .join(s)
|
41 |
+
|
42 |
+
#print(dialog)
|
43 |
+
|
44 |
+
query = f"{instruction} [CONTEXT] {dialog} {knowledge}"
|
45 |
+
|
46 |
+
top_p = 0.9
|
47 |
+
min_length = 8
|
48 |
+
max_length = 64
|
49 |
+
|
50 |
+
|
51 |
+
# tokenize the new input sentence
|
52 |
+
new_user_input_ids = tokenizer.encode(f"{query}", return_tensors='pt')
|
53 |
+
|
54 |
+
|
55 |
+
output = model.generate(new_user_input_ids, min_length=int(
|
56 |
+
min_length), max_length=int(max_length), top_p=top_p, do_sample=True).tolist()
|
57 |
+
|
58 |
+
|
59 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
60 |
+
|
61 |
+
|
62 |
+
history.append((input, response))
|
63 |
+
|
64 |
+
return history, history
|
65 |
+
|
66 |
+
"""# Step 3 — Creating a Gradio Chatbot UI"""
|
67 |
+
|
68 |
+
import gradio as gr
|
69 |
+
|
70 |
+
|
71 |
+
gr.Interface(fn=predict,
|
72 |
+
inputs=["text",'state'],
|
73 |
+
outputs=["chatbot",'state']).launch(debug = True, share = True)
|
74 |
+
|
readme.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Building a Chatbot UI with Microsoft GODEL and Gradio
|
2 |
+
|
3 |
+
This project demonstrates how to create a conversational AI chatbot using Microsoft's GODEL model and deploy it with a Gradio UI. The chatbot is designed to respond empathetically in a dialogue context.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- **Empathetic Dialogues**: Utilizes Microsoft's GODEL model to generate empathetic responses.
|
8 |
+
- **Gradio UI**: Simple and interactive web interface for the chatbot.
|
9 |
+
- **Hugging Face Integration**: Easily deploy and manage your model using Hugging Face's platform.
|
10 |
+
|
11 |
+
## Installation
|
12 |
+
|
13 |
+
To run this project, you'll need to have Python installed. You can install the required packages using the following command:
|
14 |
+
|
15 |
+
```bash
|
16 |
+
pip install -r requirements.txt
|
requierements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.33.2
|
2 |
+
gradio==3.30.0
|
3 |
+
huggingface_hub==0.17.1
|
4 |
+
torch>=1.13.1
|