File size: 37,517 Bytes
c02a317
 
 
 
 
 
 
7d04582
c02a317
 
 
7d04582
c02a317
7d04582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
7d04582
c02a317
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
7d04582
c02a317
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
7d04582
c02a317
7d04582
 
 
c02a317
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
74a5eb3
7d04582
c02a317
 
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
c02a317
 
 
 
7d04582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4255999
7d04582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0b8d6
 
 
 
7d04582
 
 
 
 
 
 
 
 
71e9f8e
7d04582
 
 
 
 
4255999
7d04582
 
 
 
 
 
 
 
 
 
 
 
4255999
7d04582
 
 
 
 
 
 
 
 
c02a317
 
 
 
 
 
 
 
7d04582
 
 
c02a317
 
 
 
 
 
 
 
 
 
 
 
 
 
7d04582
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
# Initalize a pipeline
from kokoro import KPipeline
# from IPython.display import display, Audio
# import soundfile as sf
import os
from huggingface_hub import list_repo_files
import uuid
import re
import gradio as gr


#translate langauge
from deep_translator import GoogleTranslator
language_map_local = {
"American English": "en",
"British English": "en",
"Hindi": "hi",
"Spanish": "es",
"French": "fr",
"Italian": "it",
"Brazilian Portuguese": "pt",
"Japanese": "ja",
"Mandarin Chinese": "zh-CN"
}
def bulk_translate(text, target_language, chunk_size=500,MAX_ALLOWED_CHARACTERS = 10000):
    if len(text)>=MAX_ALLOWED_CHARACTERS:
      gr.Warning("[WARNING] Text too long — skipping translation to prevent Google Translate abuse.")
      return text
    # language_map_local = {
    # "American English": "en",
    # "British English": "en",
    # "Hindi": "hi",
    # "Spanish": "es",
    # "French": "fr",
    # "Italian": "it",
    # "Brazilian Portuguese": "pt",
    # "Japanese": "ja",
    # "Mandarin Chinese": "zh-CN"
    # }
    # lang_code = GoogleTranslator().get_supported_languages(as_dict=True).get(target_language.lower())
    lang_code=language_map_local[target_language]
    sentences = re.split(r'(?<=[.!?])\s+', text)  # Split text into sentences
    chunks = []
    current_chunk = ""

    for sentence in sentences:
        if len(current_chunk) + len(sentence) <= chunk_size:
            current_chunk += " " + sentence
        else:
            chunks.append(current_chunk.strip())
            current_chunk = sentence

    if current_chunk:
        chunks.append(current_chunk.strip())

    translated_chunks = [GoogleTranslator(target=lang_code).translate(chunk) for chunk in chunks]
    result=" ".join(translated_chunks)
    return result.strip()

# Language mapping dictionary
language_map = {
    "American English": "a",
    "British English": "b",
    "Hindi": "h",
    "Spanish": "e",
    "French": "f",
    "Italian": "i",
    "Brazilian Portuguese": "p",
    "Japanese": "j",
    "Mandarin Chinese": "z"
}


def update_pipeline(Language):
    """ Updates the pipeline only if the language has changed. """
    global pipeline, last_used_language
    # Get language code, default to 'a' if not found
    new_lang = language_map.get(Language, "a")

    # Only update if the language is different
    if new_lang != last_used_language:
        pipeline = KPipeline(lang_code=new_lang)
        last_used_language = new_lang
        try:
            pipeline = KPipeline(lang_code=new_lang)
            last_used_language = new_lang  # Update last used language
        except Exception as e:
            gr.Warning(f"Make sure the input text is in {Language}",duration=10)
            gr.Warning(f"Fallback to English Language",duration=5)
            pipeline = KPipeline(lang_code="a")  # Fallback to English
            last_used_language = "a"



def get_voice_names(repo_id):
    """Fetches and returns a list of voice names (without extensions) from the given Hugging Face repository."""
    return [os.path.splitext(file.replace("voices/", ""))[0] for file in list_repo_files(repo_id) if file.startswith("voices/")]

def create_audio_dir():
    """Creates the 'kokoro_audio' directory in the root folder if it doesn't exist."""
    root_dir = os.getcwd()  # Use current working directory instead of __file__
    audio_dir = os.path.join(root_dir, "kokoro_audio")

    if not os.path.exists(audio_dir):
        os.makedirs(audio_dir)
        print(f"Created directory: {audio_dir}")
    else:
        print(f"Directory already exists: {audio_dir}")
    return audio_dir

import re

def clean_text(text):
    # Define replacement rules
    replacements = {
        "–": " ",  # Replace en-dash with space
        "-": " ",  # Replace hyphen with space
        "**": " ", # Replace double asterisks with space
        "*": " ",  # Replace single asterisk with space
        "#": " ",  # Replace hash with space
    }

    # Apply replacements
    for old, new in replacements.items():
        text = text.replace(old, new)

    # Remove emojis using regex (covering wide range of Unicode characters)
    emoji_pattern = re.compile(
        r'[\U0001F600-\U0001F64F]|'  # Emoticons
        r'[\U0001F300-\U0001F5FF]|'  # Miscellaneous symbols and pictographs
        r'[\U0001F680-\U0001F6FF]|'  # Transport and map symbols
        r'[\U0001F700-\U0001F77F]|'  # Alchemical symbols
        r'[\U0001F780-\U0001F7FF]|'  # Geometric shapes extended
        r'[\U0001F800-\U0001F8FF]|'  # Supplemental arrows-C
        r'[\U0001F900-\U0001F9FF]|'  # Supplemental symbols and pictographs
        r'[\U0001FA00-\U0001FA6F]|'  # Chess symbols
        r'[\U0001FA70-\U0001FAFF]|'  # Symbols and pictographs extended-A
        r'[\U00002702-\U000027B0]|'  # Dingbats
        r'[\U0001F1E0-\U0001F1FF]'   # Flags (iOS)
        r'', flags=re.UNICODE)

    text = emoji_pattern.sub(r'', text)

    # Remove multiple spaces and extra line breaks
    text = re.sub(r'\s+', ' ', text).strip()

    return text

def tts_file_name(text,language):
    global temp_folder
    # Remove all non-alphabetic characters and convert to lowercase
    text = re.sub(r'[^a-zA-Z\s]', '', text)  # Retain only alphabets and spaces
    text = text.lower().strip()             # Convert to lowercase and strip leading/trailing spaces
    text = text.replace(" ", "_")           # Replace spaces with underscores
    language=language.replace(" ", "_").strip()
    # Truncate or handle empty text
    truncated_text = text[:20] if len(text) > 20 else text if len(text) > 0 else language

    # Generate a random string for uniqueness
    random_string = uuid.uuid4().hex[:8].upper()

    # Construct the file name
    file_name = f"{temp_folder}/{truncated_text}_{random_string}.wav"
    return file_name


# import soundfile as sf
import numpy as np
import wave
from pydub import AudioSegment
from pydub.silence import split_on_silence

def remove_silence_function(file_path,minimum_silence=50):
    # Extract file name and format from the provided path
    output_path = file_path.replace(".wav", "_no_silence.wav")
    audio_format = "wav"
    # Reading and splitting the audio file into chunks
    sound = AudioSegment.from_file(file_path, format=audio_format)
    audio_chunks = split_on_silence(sound,
                                    min_silence_len=100,
                                    silence_thresh=-45,
                                    keep_silence=minimum_silence)
    # Putting the file back together
    combined = AudioSegment.empty()
    for chunk in audio_chunks:
        combined += chunk
    combined.export(output_path, format=audio_format)
    return output_path

def generate_and_save_audio(text, Language="American English",voice="af_bella", speed=1,remove_silence=False,keep_silence_up_to=0.05):
    text=clean_text(text)
    update_pipeline(Language)
    generator = pipeline(text, voice=voice, speed=speed, split_pattern=r'\n+')
    save_path=tts_file_name(text,Language)
    # Open the WAV file for writing
    timestamps={}
    with wave.open(save_path, 'wb') as wav_file:
        # Set the WAV file parameters
        wav_file.setnchannels(1)  # Mono audio
        wav_file.setsampwidth(2)  # 2 bytes per sample (16-bit audio)
        wav_file.setframerate(24000)  # Sample rate
        for i, result in enumerate(generator):
          gs = result.graphemes # str
        #   print(f"\n{i}: {gs}")
          ps = result.phonemes # str
          # audio = result.audio.cpu().numpy()
          audio = result.audio
          tokens = result.tokens # List[en.MToken]
          timestamps[i]={"text":gs,"words":[]}
          if Language in ["American English", "British English"]:
            for t in tokens:
                # print(t.text, repr(t.whitespace), t.start_ts, t.end_ts)
                timestamps[i]["words"].append({"word":t.text,"start":t.start_ts,"end":t.end_ts})
          audio_np = audio.numpy()  # Convert Tensor to NumPy array
          audio_int16 = (audio_np * 32767).astype(np.int16)  # Scale to 16-bit range
          audio_bytes = audio_int16.tobytes()  # Convert to bytes
          # Write the audio chunk to the WAV file
          duration_sec = len(audio_np) / 24000
          timestamps[i]["duration"] = duration_sec
          wav_file.writeframes(audio_bytes)
    if remove_silence:
      keep_silence = int(keep_silence_up_to * 1000)
      new_wave_file=remove_silence_function(save_path,minimum_silence=keep_silence)
      return new_wave_file,timestamps
    return save_path,timestamps



def adjust_timestamps(timestamp_dict):
    adjusted_timestamps = []
    last_global_end = 0  # Cumulative audio timeline

    for segment_id in sorted(timestamp_dict.keys()):
        segment = timestamp_dict[segment_id]
        words = segment["words"]
        chunk_duration = segment["duration"]

        # If there are valid words, get last word end
        last_word_end_in_chunk = (
            max(w["end"] for w in words if w["end"] not in [None, 0])
            if words else 0
        )

        silence_gap = chunk_duration - last_word_end_in_chunk
        if silence_gap < 0:  # In rare cases where end > duration (due to rounding)
            silence_gap = 0

        for word in words:
            start = word["start"] or 0
            end = word["end"] or start

            adjusted_timestamps.append({
                "word": word["word"],
                "start": round(last_global_end + start, 3),
                "end": round(last_global_end + end, 3)
            })

        # Add entire chunk duration to global end
        last_global_end += chunk_duration

    return adjusted_timestamps



import string

def write_word_srt(word_level_timestamps, output_file="word.srt", skip_punctuation=True):
    with open(output_file, "w", encoding="utf-8") as f:
        index = 1  # Track subtitle numbering separately

        for entry in word_level_timestamps:
            word = entry["word"]

            # Skip punctuation if enabled
            if skip_punctuation and all(char in string.punctuation for char in word):
                continue

            start_time = entry["start"]
            end_time = entry["end"]

            # Convert seconds to SRT time format (HH:MM:SS,mmm)
            def format_srt_time(seconds):
                hours = int(seconds // 3600)
                minutes = int((seconds % 3600) // 60)
                sec = int(seconds % 60)
                millisec = int((seconds % 1) * 1000)
                return f"{hours:02}:{minutes:02}:{sec:02},{millisec:03}"

            start_srt = format_srt_time(start_time)
            end_srt = format_srt_time(end_time)

            # Write entry to SRT file
            f.write(f"{index}\n{start_srt} --> {end_srt}\n{word}\n\n")
            index += 1  # Increment subtitle number

import string


def split_line_by_char_limit(text, max_chars=30):
    words = text.split()
    lines = []
    current_line = ""

    for word in words:
        if len(current_line + " " + word) <= max_chars:
            current_line = (current_line + " " + word).strip()
        else:
            lines.append(current_line)
            current_line = word

    if current_line:
        # Check if last line is a single word and there is a previous line
        if len(current_line.split()) == 1 and len(lines) > 0:
            # Append single word to previous line
            lines[-1] += " " + current_line
        else:
            lines.append(current_line)

    return "\n".join(lines)


def write_sentence_srt(word_level_timestamps, output_file="subtitles.srt", max_words=8, min_pause=0.1):
    subtitles = []  # Stores subtitle blocks
    subtitle_words = []  # Temporary list for words in the current subtitle
    start_time = None  # Tracks start time of current subtitle

    remove_punctuation = ['"',"—"]  # Add punctuations to remove if needed

    for i, entry in enumerate(word_level_timestamps):
        word = entry["word"]
        word_start = entry["start"]
        word_end = entry["end"]

        # Skip selected punctuation from remove_punctuation list
        if word in remove_punctuation:
            continue

        # Attach punctuation to the previous word
        if word in string.punctuation:
            if subtitle_words:
                subtitle_words[-1] = (subtitle_words[-1][0] + word, subtitle_words[-1][1])
            continue

        # Start a new subtitle block if needed
        if start_time is None:
            start_time = word_start

        # Calculate pause duration if this is not the first word
        if subtitle_words:
            last_word_end = subtitle_words[-1][1]
            pause_duration = word_start - last_word_end
        else:
            pause_duration = 0

        # **NEW FIX:** If pause is too long, create a new subtitle but ensure continuity
        if (word.endswith(('.', '!', '?')) and len(subtitle_words) >= 5) or len(subtitle_words) >= max_words or pause_duration > min_pause:
            end_time = subtitle_words[-1][1]  # Use last word's end time
            subtitle_text = " ".join(w[0] for w in subtitle_words)
            subtitles.append((start_time, end_time, subtitle_text))

            # Reset for the next subtitle, but **ensure continuity**
            subtitle_words = [(word, word_end)]  # **Carry the current word to avoid delay**
            start_time = word_start  # **Start at the current word, not None**

            continue  # Avoid adding the word twice

        # Add the current word to the subtitle
        subtitle_words.append((word, word_end))

    # Ensure last subtitle is added if anything remains
    if subtitle_words:
        end_time = subtitle_words[-1][1]
        subtitle_text = " ".join(w[0] for w in subtitle_words)
        subtitles.append((start_time, end_time, subtitle_text))

    # Function to format SRT timestamps
    def format_srt_time(seconds):
        hours = int(seconds // 3600)
        minutes = int((seconds % 3600) // 60)
        sec = int(seconds % 60)
        millisec = int((seconds % 1) * 1000)
        return f"{hours:02}:{minutes:02}:{sec:02},{millisec:03}"

    # Write subtitles to SRT file
    with open(output_file, "w", encoding="utf-8") as f:
        for i, (start, end, text) in enumerate(subtitles, start=1):
            text=split_line_by_char_limit(text, max_chars=30)
            f.write(f"{i}\n{format_srt_time(start)} --> {format_srt_time(end)}\n{text}\n\n")

    # print(f"SRT file '{output_file}' created successfully!")


import json
import re

def fix_punctuation(text):
    # Remove spaces before punctuation marks (., ?, !, ,)
    text = re.sub(r'\s([.,?!])', r'\1', text)

    # Handle quotation marks: remove spaces before and after them
    text = text.replace('" ', '"')
    text = text.replace(' "', '"')
    text = text.replace('" ', '"')

    # Track quotation marks to add space after closing quotes
    track = 0
    result = []

    for index, char in enumerate(text):
        if char == '"':
            track += 1
            result.append(char)
            # If it's a closing quote (even number of quotes), add a space after it
            if track % 2 == 0:
                result.append(' ')
        else:
            result.append(char)
    text=''.join(result)
    return text.strip()



def make_json(word_timestamps, json_file_name):
    data = {}
    temp = []
    inside_quote = False  # Track if we are inside a quoted sentence
    start_time = word_timestamps[0]['start']  # Initialize with the first word's start time
    end_time = word_timestamps[0]['end']  # Initialize with the first word's end time
    words_in_sentence = []
    sentence_id = 0  # Initialize sentence ID

    # Process each word in word_timestamps
    for i, word_data in enumerate(word_timestamps):
        word = word_data['word']
        word_start = word_data['start']
        word_end = word_data['end']

        # Collect word info for JSON
        words_in_sentence.append({'word': word, 'start': word_start, 'end': word_end})

        # Update the end_time for the sentence based on the current word
        end_time = word_end

        # Properly handle opening and closing quotation marks
        if word == '"':
            if inside_quote:
                temp[-1] += '"'  # Attach closing quote to the last word
            else:
                temp.append('"')  # Keep opening quote as a separate entry
            inside_quote = not inside_quote  # Toggle inside_quote state
        else:
            temp.append(word)

        # Check if this is a sentence-ending punctuation
        if word.endswith(('.', '?', '!')) and not inside_quote:
            # Ensure the next word is NOT a dialogue tag before finalizing the sentence
            if i + 1 < len(word_timestamps):
                next_word = word_timestamps[i + 1]['word']
                if next_word[0].islower():  # Likely a dialogue tag like "he said"
                    continue  # Do not break the sentence yet

            # Store the full sentence for JSON and reset word collection for next sentence
            sentence = " ".join(temp)
            sentence = fix_punctuation(sentence)  # Fix punctuation in the sentence
            data[sentence_id] = {
                'text': sentence,
                'duration': end_time - start_time,
                'start': start_time,
                'end': end_time,
                'words': words_in_sentence
            }

            # Reset for the next sentence
            temp = []
            words_in_sentence = []
            start_time = word_data['start']  # Update the start time for the next sentence
            sentence_id += 1  # Increment sentence ID

    # Handle any remaining words if necessary
    if temp:
        sentence = " ".join(temp)
        sentence = fix_punctuation(sentence)  # Fix punctuation in the sentence
        data[sentence_id] = {
            'text': sentence,
            'duration': end_time - start_time,
            'start': start_time,
            'end': end_time,
            'words': words_in_sentence
        }

    # Write data to JSON file
    with open(json_file_name, 'w') as json_file:
        json.dump(data, json_file, indent=4)
    return json_file_name




import os

def modify_filename(save_path: str, prefix: str = ""):
    directory, filename = os.path.split(save_path)
    name, ext = os.path.splitext(filename)
    new_filename = f"{prefix}{name}{ext}"
    return os.path.join(directory, new_filename)
import shutil
def save_current_data():
    if os.path.exists("./last"):
        shutil.rmtree("./last")
    os.makedirs("./last",exist_ok=True)

def KOKORO_TTS_API(text, Language="American English",voice="af_bella", speed=1,translate_text=False,remove_silence=False,keep_silence_up_to=0.05):
    if translate_text:
        text=bulk_translate(text, Language, chunk_size=500)
    save_path,timestamps=generate_and_save_audio(text=text, Language=Language,voice=voice, speed=speed,remove_silence=remove_silence,keep_silence_up_to=keep_silence_up_to)
    if remove_silence==False:
        if Language in ["American English", "British English"]:
            word_level_timestamps=adjust_timestamps(timestamps)
            word_level_srt = modify_filename(save_path.replace(".wav", ".srt"), prefix="word_level_")
            normal_srt = modify_filename(save_path.replace(".wav", ".srt"), prefix="sentence_")
            json_file = modify_filename(save_path.replace(".wav", ".json"), prefix="duration_")
            write_word_srt(word_level_timestamps, output_file=word_level_srt, skip_punctuation=True)
            write_sentence_srt(word_level_timestamps, output_file=normal_srt, min_pause=0.01)
            make_json(word_level_timestamps, json_file)
            save_current_data()
            shutil.copy(save_path, "./last/")
            shutil.copy(word_level_srt, "./last/")
            shutil.copy(normal_srt, "./last/")
            shutil.copy(json_file, "./last/")
            return save_path,save_path,word_level_srt,normal_srt,json_file
    return save_path,save_path,None,None,None



def toggle_autoplay(autoplay):
        return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)
lang_list = ['American English', 'British English', 'Hindi', 'Spanish', 'French', 'Italian', 'Brazilian Portuguese', 'Japanese', 'Mandarin Chinese']
voice_names = get_voice_names("hexgrad/Kokoro-82M")
def ui():
    # Define examples in the format you mentioned
    dummy_examples = [
        ["Hey, y'all, let’s grab some coffee and catch up!", "American English", "af_bella"],
        ["I'd like a large coffee, please.", "British English", "bf_isabella"],
        ["नमस्ते, कैसे हो?", "Hindi", "hf_alpha"],
        ["Hola, ¿cómo estás?", "Spanish", "ef_dora"],
        ["Bonjour, comment ça va?", "French", "ff_siwis"],
        ["Ciao, come stai?", "Italian", "if_sara"],
        ["Olá, como você está?", "Brazilian Portuguese", "pf_dora"],
        ["こんにちは、お元気ですか?", "Japanese", "jf_nezumi"],
        ["你好,你怎么样?", "Mandarin Chinese", "zf_xiaoni"]
    ]

    with gr.Blocks() as demo:
        # gr.Markdown("<center><h1 style='font-size: 40px;'>KOKORO TTS</h1></center>")  # Larger title with CSS
        gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/Kokoro-TTS-Subtitle)")


        with gr.Row():
            with gr.Column():
                text = gr.Textbox(label='📝 Enter Text', lines=3)

                with gr.Row():
                    language_name = gr.Dropdown(lang_list, label="🌍 Select Language", value=lang_list[0])

                with gr.Row():
                    voice_name = gr.Dropdown(voice_names, label="🎙️ Choose VoicePack", value='af_heart')#voice_names[0])

                with gr.Row():
                    generate_btn = gr.Button('🚀 Generate', variant='primary')

                with gr.Accordion('🎛️ Audio Settings', open=False):
                    speed = gr.Slider(minimum=0.25, maximum=2, value=1, step=0.1, label='⚡️Speed', info='Adjust the speaking speed')
                    translate_text = gr.Checkbox(value=False, label='🌐 Translate Text to Selected Language')
                    remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')

            with gr.Column():
                audio = gr.Audio(interactive=False, label='🔊 Output Audio', autoplay=True)
                audio_file = gr.File(label='📥 Download Audio')
                # word_level_srt_file = gr.File(label='Download Word-Level SRT')
                # srt_file = gr.File(label='Download Sentence-Level SRT')
                # sentence_duration_file = gr.File(label='Download Sentence Duration JSON')
                with gr.Accordion('🎬 Autoplay, Subtitle, Timestamp', open=False):
                    autoplay = gr.Checkbox(value=True, label='▶️ Autoplay')
                    autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
                    word_level_srt_file = gr.File(label='📝 Download Word-Level SRT')
                    srt_file = gr.File(label='📜 Download Sentence-Level SRT')
                    sentence_duration_file = gr.File(label='⏳ Download Sentence Timestamp JSON')

        text.submit(KOKORO_TTS_API, inputs=[text, language_name, voice_name, speed,translate_text, remove_silence], outputs=[audio, audio_file,word_level_srt_file,srt_file,sentence_duration_file])
        generate_btn.click(KOKORO_TTS_API, inputs=[text, language_name, voice_name, speed,translate_text, remove_silence], outputs=[audio, audio_file,word_level_srt_file,srt_file,sentence_duration_file])

        # Add examples to the interface
        gr.Examples(examples=dummy_examples, inputs=[text, language_name, voice_name])

    return demo

def tutorial():
    # Markdown explanation for language code
    explanation = """
    ## Language Code Explanation:
    Example: `'af_bella'`
    - **'a'** stands for **American English**.
    - **'f_'** stands for **Female** (If it were 'm_', it would mean Male).
    - **'bella'** refers to the specific voice.

    The first character in the voice code stands for the language:
    - **"a"**: American English
    - **"b"**: British English
    - **"h"**: Hindi
    - **"e"**: Spanish
    - **"f"**: French
    - **"i"**: Italian
    - **"p"**: Brazilian Portuguese
    - **"j"**: Japanese
    - **"z"**: Mandarin Chinese

    The second character stands for gender:
    - **"f_"**: Female
    - **"m_"**: Male
    """
    with gr.Blocks() as demo2:
        # gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/kokoro_v1)")
        gr.Markdown(explanation)  # Display the explanation
    return demo2


#@title subtitle
import os
import re
import uuid
import shutil
import platform
import datetime
import subprocess

import pysrt
import librosa
import soundfile as sf
from tqdm.auto import tqdm
from pydub import AudioSegment
from deep_translator import GoogleTranslator


# ---------------------- Utility Functions ----------------------
def get_current_time():
    return datetime.datetime.now().strftime("%I_%M_%p")

def get_subtitle_Dub_path(srt_file_path, Language):
    file_name = os.path.splitext(os.path.basename(srt_file_path))[0]
    full_base_path = os.path.join(os.getcwd(), "TTS_DUB")
    os.makedirs(full_base_path, exist_ok=True)
    random_string = str(uuid.uuid4())[:6]
    lang = language_map_local.get(Language, Language.replace(" ", "_"))
    new_path = os.path.join(full_base_path, f"{file_name}_{lang}_{random_string}.wav")
    return new_path.replace("__", "_")

def clean_srt(input_path):
    def clean_srt_line(text):
        for bad in ["[", "]", "♫"]:
            text = text.replace(bad, "")
        return text.strip()

    subs = pysrt.open(input_path, encoding='utf-8')
    output_path = input_path.lower().replace(".srt", "") + "_.srt"
    with open(output_path, "w", encoding='utf-8') as file:
        for sub in subs:
            file.write(f"{sub.index}\n{sub.start} --> {sub.end}\n{clean_srt_line(sub.text)}\n\n")
    return output_path

def translate_srt(input_path, target_language="Hindi", max_segments=500, chunk_size=4000):
    output_path = input_path.replace(".srt", f"{target_language}.srt")
    subs = pysrt.open(input_path, encoding='utf-8')
    if len(subs) > max_segments:
        gr.Warning(f"Too many segments: {len(subs)} > {max_segments}. Skipping translation.")
        return input_path

    original = [f"<#{i}>{s.text}" for i, s in enumerate(subs)]
    full_text = "\n".join(original)

    chunks, start = [], 0
    while start < len(full_text):
        end = start + chunk_size
        split_point = full_text.rfind("<#", start, end) if end < len(full_text) else len(full_text)
        chunks.append(full_text[start:split_point])
        start = split_point

    lang_code = language_map_local.get(target_language, "en")
    translated_chunks = [GoogleTranslator(target=lang_code).translate(chunk) for chunk in chunks]
    translated_text = "\n".join(translated_chunks)

    pattern = re.compile(r"<#(\d+)>(.*?)(?=<#\d+>|$)", re.DOTALL)
    translated_dict = {int(i): txt.strip() for i, txt in pattern.findall(translated_text)}

    for i, sub in enumerate(subs):
        sub.text = translated_dict.get(i, sub.text)

    subs.save(output_path, encoding='utf-8')
    return output_path

def prepare_srt(srt_path, target_language, translate=False):
    path = clean_srt(srt_path)
    return translate_srt(path, target_language) if translate else path


def is_ffmpeg_installed():
    ffmpeg_exe = "ffmpeg.exe" if platform.system() == "Windows" else "ffmpeg"
    try:
        subprocess.run([ffmpeg_exe, "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
        return True, ffmpeg_exe
    except Exception:
        gr.Warning("FFmpeg not found. Falling back to librosa for audio speedup.", duration=20)
        return False, ffmpeg_exe

def speedup_audio_librosa(input_file, output_file, speedup_factor):
    try:
        y, sr = librosa.load(input_file, sr=None)
        y_stretched = librosa.effects.time_stretch(y, rate=speedup_factor)
        sf.write(output_file, y_stretched, sr)
    except Exception as e:
        gr.Warning(f"Librosa speedup failed: {e}")
        shutil.copy(input_file, output_file)

def change_speed(input_file, output_file, speedup_factor, use_ffmpeg, ffmpeg_path):
    if use_ffmpeg:
        try:
            subprocess.run([ffmpeg_path, "-i", input_file, "-filter:a", f"atempo={speedup_factor}", output_file, "-y"], check=True)
        except Exception as e:
            gr.Error(f"FFmpeg speedup error: {e}")
            speedup_audio_librosa(input_file, output_file, speedup_factor)
    else:
        speedup_audio_librosa(input_file, output_file, speedup_factor)

def remove_edge_silence(input_path, output_path):
    y, sr = librosa.load(input_path, sr=None)
    trimmed_audio, _ = librosa.effects.trim(y, top_db=30)
    sf.write(output_path, trimmed_audio, sr)
    return output_path


# ---------------------- Main Class ----------------------
class SRTDubbing:
    def __init__(self, use_ffmpeg=True, ffmpeg_path="ffmpeg"):
        self.use_ffmpeg = use_ffmpeg
        self.ffmpeg_path = ffmpeg_path
        self.cache_dir = "./cache"
        os.makedirs("./dummy", exist_ok=True)
        os.makedirs(self.cache_dir, exist_ok=True)

    @staticmethod
    def convert_to_millisecond(t):
        return t.hours * 3600000 + t.minutes * 60000 + t.seconds * 1000 + int(t.milliseconds)

    @staticmethod
    def read_srt_file(file_path):
        subs = pysrt.open(file_path, encoding='utf-8')
        entries = []
        prev_end = 0
        for idx, sub in enumerate(subs, 1):
            start, end = SRTDubbing.convert_to_millisecond(sub.start), SRTDubbing.convert_to_millisecond(sub.end)
            pause = start - prev_end if idx > 1 else start
            entries.append({
                'entry_number': idx,
                'start_time': start,
                'end_time': end,
                'text': sub.text.strip(),
                'pause_time': pause,
                'audio_name': f"{idx}.wav",
                'previous_pause': f"{idx}_before_pause.wav",
            })
            prev_end = end
        return entries

    def text_to_speech_srt(self, text, audio_path, language, voice, actual_duration):
        temp = "./cache/temp.wav"
        # Step 1: Generate initial audio
        path, _ = generate_and_save_audio(text, Language=language, voice=voice, speed=1, remove_silence=False, keep_silence_up_to=0.05)
        # ✂️ Remove leading and trailing silence to make timing tight without trimming actual speech.
        remove_edge_silence(path, temp)
        # 📏 Load the trimmed audio and get its duration in milliseconds.
        audio = AudioSegment.from_file(temp)

        # ⏱️ If no duration is specified (edge case), use the TTS as-is without speed/timing adjustments.
        if actual_duration == 0:
            shutil.move(temp, audio_path)
            return

        # Step 2: If TTS audio is longer, retry with remove_silence=True
        if len(audio) > actual_duration:
            path, _ = generate_and_save_audio(text, Language=language, voice=voice, speed=1, remove_silence=True, keep_silence_up_to=0.05)
            remove_edge_silence(path, temp)
            audio = AudioSegment.from_file(temp)

        # Step 3: If still longer → speed up
        if len(audio) > actual_duration:
            factor = len(audio) / actual_duration
            path, _ = generate_and_save_audio(text, Language=language, voice=voice, speed=factor, remove_silence=True, keep_silence_up_to=0.05)
            remove_edge_silence(path, temp)
            audio = AudioSegment.from_file(temp)

        # Final Adjustment: Speed up via FFmpeg or librosa
        if len(audio) > actual_duration:
            factor = len(audio) / actual_duration
            final_temp = "./cache/speedup_temp.wav"
            change_speed(temp, final_temp, factor, self.use_ffmpeg, self.ffmpeg_path)
            shutil.move(final_temp, audio_path)

        # Add silence if too short
        elif len(audio) < actual_duration:
            silence = AudioSegment.silent(duration=actual_duration - len(audio))
            (audio + silence).export(audio_path, format="wav")
        # ➡️ Fallback: If TTS already perfectly matches subtitle duration, save as-is. 
        else:
            shutil.move(temp, audio_path) #bad code

    @staticmethod
    def make_silence(duration, path):
        AudioSegment.silent(duration=duration).export(path, format="wav")

    @staticmethod
    def create_folder_for_srt(srt_file_path):
        base = os.path.splitext(os.path.basename(srt_file_path))[0]
        folder = f"./dummy/{base}_{str(uuid.uuid4())[:4]}"
        os.makedirs(folder, exist_ok=True)
        return folder

    @staticmethod
    def concatenate_audio_files(paths, output):
        audio = sum([AudioSegment.from_file(p) for p in paths], AudioSegment.silent(duration=0))
        audio.export(output, format="wav")

    def srt_to_dub(self, srt_path, output_path, language, voice):
        entries = self.read_srt_file(srt_path)
        folder = self.create_folder_for_srt(srt_path)
        all_audio = []
        for entry in tqdm(entries):
            self.make_silence(entry['pause_time'], os.path.join(folder, entry['previous_pause']))
            all_audio.append(os.path.join(folder, entry['previous_pause']))

            tts_path = os.path.join(folder, entry['audio_name'])
            self.text_to_speech_srt(entry['text'], tts_path, language, voice, entry['end_time'] - entry['start_time'])
            all_audio.append(tts_path)

        self.concatenate_audio_files(all_audio, output_path)


# ---------------------- Entrypoint ----------------------
def srt_process(srt_path, Language="American English", voice_name="af_bella", translate=False):
    if not srt_path.endswith(".srt"):
        gr.Error("Please upload a valid .srt file", duration=5)
        return None

    use_ffmpeg, ffmpeg_path = is_ffmpeg_installed()
    processed_srt = prepare_srt(srt_path, Language, translate)
    output_path = get_subtitle_Dub_path(srt_path, Language)

    SRTDubbing(use_ffmpeg, ffmpeg_path).srt_to_dub(processed_srt, output_path, Language, voice_name)
    return output_path,output_path

def subtitle_ui():
  with gr.Blocks() as demo:

      gr.Markdown(
          """
          # Generate Audio File From Subtitle [Upload Only .srt file]
          
          To generate subtitles, you can use the [Whisper Turbo Subtitle](https://github.com/NeuralFalconYT/Whisper-Turbo-Subtitle) 
          
          """
      )
      with gr.Row():
          with gr.Column():
              srt_file = gr.File(label='Upload .srt Subtitle File Only')
              # with gr.Row():
              language_name = gr.Dropdown(lang_list, label="🌍 Select Language", value=lang_list[0])
              # with gr.Row():
              voice = gr.Dropdown(
                      voice_names, 
                      value='af_bella', 
                      allow_custom_value=False, 
                      label='🎙️ Choose VoicePack', 
                  )
              with gr.Row():
                  generate_btn_ = gr.Button('Generate', variant='primary')

              with gr.Accordion('Other Settings', open=False):
                  translate_text = gr.Checkbox(value=False, label='🌐 Translate Subtitle to Selected Language')
                  
              
              
          with gr.Column():
              audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
              audio_file = gr.File(label='📥 Download Audio')
              with gr.Accordion('Enable Autoplay', open=False):
                  autoplay = gr.Checkbox(value=True, label='Autoplay')
                  autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])

      # srt_file.submit(
      #     srt_process, 
      #     inputs=[srt_file, voice], 
      #     outputs=[audio]
      # )
      generate_btn_.click(
          srt_process, 
          inputs=[srt_file,language_name,voice,translate_text], 
          outputs=[audio,audio_file]
      )
      return demo
    


# Example usage:
# srt_file_path = "/content/me.srt"
# dub_audio_path = srt_process(srt_file_path, Language="American English", voice_name="af_bella", translate=False)
# print(f"Audio file saved at: {dub_audio_path}")

import click
@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
# def main(debug=True, share=True):
    demo1 = ui()
    demo2 = subtitle_ui()
    demo3 = tutorial()
    demo = gr.TabbedInterface([demo1, demo2,demo3],["Multilingual TTS","SRT Dubbing","VoicePack Explanation"],title="Kokoro TTS")#,theme='JohnSmith9982/small_and_pretty')
    demo.queue().launch(debug=debug, share=share)
    # demo.queue().launch(debug=debug, share=share,server_port=9000)
    #Run on local network
    # laptop_ip="192.168.0.30"
    # port=8080
    # demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port)



# Initialize default pipeline
last_used_language = "a"
pipeline = KPipeline(lang_code=last_used_language)
temp_folder = create_audio_dir()
if __name__ == "__main__":
    main()