# Initalize a pipeline from kokoro import KPipeline # from IPython.display import display, Audio # import soundfile as sf import os from huggingface_hub import list_repo_files import uuid import re import gradio as gr #translate langauge from deep_translator import GoogleTranslator language_map_local = { "American English": "en", "British English": "en", "Hindi": "hi", "Spanish": "es", "French": "fr", "Italian": "it", "Brazilian Portuguese": "pt", "Japanese": "ja", "Mandarin Chinese": "zh-CN" } def bulk_translate(text, target_language, chunk_size=500,MAX_ALLOWED_CHARACTERS = 10000): if len(text)>=MAX_ALLOWED_CHARACTERS: gr.Warning("[WARNING] Text too long — skipping translation to prevent Google Translate abuse.") return text # language_map_local = { # "American English": "en", # "British English": "en", # "Hindi": "hi", # "Spanish": "es", # "French": "fr", # "Italian": "it", # "Brazilian Portuguese": "pt", # "Japanese": "ja", # "Mandarin Chinese": "zh-CN" # } # lang_code = GoogleTranslator().get_supported_languages(as_dict=True).get(target_language.lower()) lang_code=language_map_local[target_language] sentences = re.split(r'(?<=[.!?])\s+', text) # Split text into sentences chunks = [] current_chunk = "" for sentence in sentences: if len(current_chunk) + len(sentence) <= chunk_size: current_chunk += " " + sentence else: chunks.append(current_chunk.strip()) current_chunk = sentence if current_chunk: chunks.append(current_chunk.strip()) translated_chunks = [GoogleTranslator(target=lang_code).translate(chunk) for chunk in chunks] result=" ".join(translated_chunks) return result.strip() # Language mapping dictionary language_map = { "American English": "a", "British English": "b", "Hindi": "h", "Spanish": "e", "French": "f", "Italian": "i", "Brazilian Portuguese": "p", "Japanese": "j", "Mandarin Chinese": "z" } def update_pipeline(Language): """ Updates the pipeline only if the language has changed. """ global pipeline, last_used_language # Get language code, default to 'a' if not found new_lang = language_map.get(Language, "a") # Only update if the language is different if new_lang != last_used_language: pipeline = KPipeline(lang_code=new_lang) last_used_language = new_lang try: pipeline = KPipeline(lang_code=new_lang) last_used_language = new_lang # Update last used language except Exception as e: gr.Warning(f"Make sure the input text is in {Language}",duration=10) gr.Warning(f"Fallback to English Language",duration=5) pipeline = KPipeline(lang_code="a") # Fallback to English last_used_language = "a" def get_voice_names(repo_id): """Fetches and returns a list of voice names (without extensions) from the given Hugging Face repository.""" return [os.path.splitext(file.replace("voices/", ""))[0] for file in list_repo_files(repo_id) if file.startswith("voices/")] def create_audio_dir(): """Creates the 'kokoro_audio' directory in the root folder if it doesn't exist.""" root_dir = os.getcwd() # Use current working directory instead of __file__ audio_dir = os.path.join(root_dir, "kokoro_audio") if not os.path.exists(audio_dir): os.makedirs(audio_dir) print(f"Created directory: {audio_dir}") else: print(f"Directory already exists: {audio_dir}") return audio_dir import re def clean_text(text): # Define replacement rules replacements = { "–": " ", # Replace en-dash with space "-": " ", # Replace hyphen with space "**": " ", # Replace double asterisks with space "*": " ", # Replace single asterisk with space "#": " ", # Replace hash with space } # Apply replacements for old, new in replacements.items(): text = text.replace(old, new) # Remove emojis using regex (covering wide range of Unicode characters) emoji_pattern = re.compile( r'[\U0001F600-\U0001F64F]|' # Emoticons r'[\U0001F300-\U0001F5FF]|' # Miscellaneous symbols and pictographs r'[\U0001F680-\U0001F6FF]|' # Transport and map symbols r'[\U0001F700-\U0001F77F]|' # Alchemical symbols r'[\U0001F780-\U0001F7FF]|' # Geometric shapes extended r'[\U0001F800-\U0001F8FF]|' # Supplemental arrows-C r'[\U0001F900-\U0001F9FF]|' # Supplemental symbols and pictographs r'[\U0001FA00-\U0001FA6F]|' # Chess symbols r'[\U0001FA70-\U0001FAFF]|' # Symbols and pictographs extended-A r'[\U00002702-\U000027B0]|' # Dingbats r'[\U0001F1E0-\U0001F1FF]' # Flags (iOS) r'', flags=re.UNICODE) text = emoji_pattern.sub(r'', text) # Remove multiple spaces and extra line breaks text = re.sub(r'\s+', ' ', text).strip() return text def tts_file_name(text,language): global temp_folder # Remove all non-alphabetic characters and convert to lowercase text = re.sub(r'[^a-zA-Z\s]', '', text) # Retain only alphabets and spaces text = text.lower().strip() # Convert to lowercase and strip leading/trailing spaces text = text.replace(" ", "_") # Replace spaces with underscores language=language.replace(" ", "_").strip() # Truncate or handle empty text truncated_text = text[:20] if len(text) > 20 else text if len(text) > 0 else language # Generate a random string for uniqueness random_string = uuid.uuid4().hex[:8].upper() # Construct the file name file_name = f"{temp_folder}/{truncated_text}_{random_string}.wav" return file_name # import soundfile as sf import numpy as np import wave from pydub import AudioSegment from pydub.silence import split_on_silence def remove_silence_function(file_path,minimum_silence=50): # Extract file name and format from the provided path output_path = file_path.replace(".wav", "_no_silence.wav") audio_format = "wav" # Reading and splitting the audio file into chunks sound = AudioSegment.from_file(file_path, format=audio_format) audio_chunks = split_on_silence(sound, min_silence_len=100, silence_thresh=-45, keep_silence=minimum_silence) # Putting the file back together combined = AudioSegment.empty() for chunk in audio_chunks: combined += chunk combined.export(output_path, format=audio_format) return output_path def generate_and_save_audio(text, Language="American English",voice="af_bella", speed=1,remove_silence=False,keep_silence_up_to=0.05): text=clean_text(text) update_pipeline(Language) generator = pipeline(text, voice=voice, speed=speed, split_pattern=r'\n+') save_path=tts_file_name(text,Language) # Open the WAV file for writing timestamps={} with wave.open(save_path, 'wb') as wav_file: # Set the WAV file parameters wav_file.setnchannels(1) # Mono audio wav_file.setsampwidth(2) # 2 bytes per sample (16-bit audio) wav_file.setframerate(24000) # Sample rate for i, result in enumerate(generator): gs = result.graphemes # str # print(f"\n{i}: {gs}") ps = result.phonemes # str # audio = result.audio.cpu().numpy() audio = result.audio tokens = result.tokens # List[en.MToken] timestamps[i]={"text":gs,"words":[]} if Language in ["American English", "British English"]: for t in tokens: # print(t.text, repr(t.whitespace), t.start_ts, t.end_ts) timestamps[i]["words"].append({"word":t.text,"start":t.start_ts,"end":t.end_ts}) audio_np = audio.numpy() # Convert Tensor to NumPy array audio_int16 = (audio_np * 32767).astype(np.int16) # Scale to 16-bit range audio_bytes = audio_int16.tobytes() # Convert to bytes # Write the audio chunk to the WAV file duration_sec = len(audio_np) / 24000 timestamps[i]["duration"] = duration_sec wav_file.writeframes(audio_bytes) if remove_silence: keep_silence = int(keep_silence_up_to * 1000) new_wave_file=remove_silence_function(save_path,minimum_silence=keep_silence) return new_wave_file,timestamps return save_path,timestamps def adjust_timestamps(timestamp_dict): adjusted_timestamps = [] last_global_end = 0 # Cumulative audio timeline for segment_id in sorted(timestamp_dict.keys()): segment = timestamp_dict[segment_id] words = segment["words"] chunk_duration = segment["duration"] # If there are valid words, get last word end last_word_end_in_chunk = ( max(w["end"] for w in words if w["end"] not in [None, 0]) if words else 0 ) silence_gap = chunk_duration - last_word_end_in_chunk if silence_gap < 0: # In rare cases where end > duration (due to rounding) silence_gap = 0 for word in words: start = word["start"] or 0 end = word["end"] or start adjusted_timestamps.append({ "word": word["word"], "start": round(last_global_end + start, 3), "end": round(last_global_end + end, 3) }) # Add entire chunk duration to global end last_global_end += chunk_duration return adjusted_timestamps import string def write_word_srt(word_level_timestamps, output_file="word.srt", skip_punctuation=True): with open(output_file, "w", encoding="utf-8") as f: index = 1 # Track subtitle numbering separately for entry in word_level_timestamps: word = entry["word"] # Skip punctuation if enabled if skip_punctuation and all(char in string.punctuation for char in word): continue start_time = entry["start"] end_time = entry["end"] # Convert seconds to SRT time format (HH:MM:SS,mmm) def format_srt_time(seconds): hours = int(seconds // 3600) minutes = int((seconds % 3600) // 60) sec = int(seconds % 60) millisec = int((seconds % 1) * 1000) return f"{hours:02}:{minutes:02}:{sec:02},{millisec:03}" start_srt = format_srt_time(start_time) end_srt = format_srt_time(end_time) # Write entry to SRT file f.write(f"{index}\n{start_srt} --> {end_srt}\n{word}\n\n") index += 1 # Increment subtitle number import string def split_line_by_char_limit(text, max_chars=30): words = text.split() lines = [] current_line = "" for word in words: if len(current_line + " " + word) <= max_chars: current_line = (current_line + " " + word).strip() else: lines.append(current_line) current_line = word if current_line: # Check if last line is a single word and there is a previous line if len(current_line.split()) == 1 and len(lines) > 0: # Append single word to previous line lines[-1] += " " + current_line else: lines.append(current_line) return "\n".join(lines) def write_sentence_srt(word_level_timestamps, output_file="subtitles.srt", max_words=8, min_pause=0.1): subtitles = [] # Stores subtitle blocks subtitle_words = [] # Temporary list for words in the current subtitle start_time = None # Tracks start time of current subtitle remove_punctuation = ['"',"—"] # Add punctuations to remove if needed for i, entry in enumerate(word_level_timestamps): word = entry["word"] word_start = entry["start"] word_end = entry["end"] # Skip selected punctuation from remove_punctuation list if word in remove_punctuation: continue # Attach punctuation to the previous word if word in string.punctuation: if subtitle_words: subtitle_words[-1] = (subtitle_words[-1][0] + word, subtitle_words[-1][1]) continue # Start a new subtitle block if needed if start_time is None: start_time = word_start # Calculate pause duration if this is not the first word if subtitle_words: last_word_end = subtitle_words[-1][1] pause_duration = word_start - last_word_end else: pause_duration = 0 # **NEW FIX:** If pause is too long, create a new subtitle but ensure continuity if (word.endswith(('.', '!', '?')) and len(subtitle_words) >= 5) or len(subtitle_words) >= max_words or pause_duration > min_pause: end_time = subtitle_words[-1][1] # Use last word's end time subtitle_text = " ".join(w[0] for w in subtitle_words) subtitles.append((start_time, end_time, subtitle_text)) # Reset for the next subtitle, but **ensure continuity** subtitle_words = [(word, word_end)] # **Carry the current word to avoid delay** start_time = word_start # **Start at the current word, not None** continue # Avoid adding the word twice # Add the current word to the subtitle subtitle_words.append((word, word_end)) # Ensure last subtitle is added if anything remains if subtitle_words: end_time = subtitle_words[-1][1] subtitle_text = " ".join(w[0] for w in subtitle_words) subtitles.append((start_time, end_time, subtitle_text)) # Function to format SRT timestamps def format_srt_time(seconds): hours = int(seconds // 3600) minutes = int((seconds % 3600) // 60) sec = int(seconds % 60) millisec = int((seconds % 1) * 1000) return f"{hours:02}:{minutes:02}:{sec:02},{millisec:03}" # Write subtitles to SRT file with open(output_file, "w", encoding="utf-8") as f: for i, (start, end, text) in enumerate(subtitles, start=1): text=split_line_by_char_limit(text, max_chars=30) f.write(f"{i}\n{format_srt_time(start)} --> {format_srt_time(end)}\n{text}\n\n") # print(f"SRT file '{output_file}' created successfully!") import json import re def fix_punctuation(text): # Remove spaces before punctuation marks (., ?, !, ,) text = re.sub(r'\s([.,?!])', r'\1', text) # Handle quotation marks: remove spaces before and after them text = text.replace('" ', '"') text = text.replace(' "', '"') text = text.replace('" ', '"') # Track quotation marks to add space after closing quotes track = 0 result = [] for index, char in enumerate(text): if char == '"': track += 1 result.append(char) # If it's a closing quote (even number of quotes), add a space after it if track % 2 == 0: result.append(' ') else: result.append(char) text=''.join(result) return text.strip() def make_json(word_timestamps, json_file_name): data = {} temp = [] inside_quote = False # Track if we are inside a quoted sentence start_time = word_timestamps[0]['start'] # Initialize with the first word's start time end_time = word_timestamps[0]['end'] # Initialize with the first word's end time words_in_sentence = [] sentence_id = 0 # Initialize sentence ID # Process each word in word_timestamps for i, word_data in enumerate(word_timestamps): word = word_data['word'] word_start = word_data['start'] word_end = word_data['end'] # Collect word info for JSON words_in_sentence.append({'word': word, 'start': word_start, 'end': word_end}) # Update the end_time for the sentence based on the current word end_time = word_end # Properly handle opening and closing quotation marks if word == '"': if inside_quote: temp[-1] += '"' # Attach closing quote to the last word else: temp.append('"') # Keep opening quote as a separate entry inside_quote = not inside_quote # Toggle inside_quote state else: temp.append(word) # Check if this is a sentence-ending punctuation if word.endswith(('.', '?', '!')) and not inside_quote: # Ensure the next word is NOT a dialogue tag before finalizing the sentence if i + 1 < len(word_timestamps): next_word = word_timestamps[i + 1]['word'] if next_word[0].islower(): # Likely a dialogue tag like "he said" continue # Do not break the sentence yet # Store the full sentence for JSON and reset word collection for next sentence sentence = " ".join(temp) sentence = fix_punctuation(sentence) # Fix punctuation in the sentence data[sentence_id] = { 'text': sentence, 'duration': end_time - start_time, 'start': start_time, 'end': end_time, 'words': words_in_sentence } # Reset for the next sentence temp = [] words_in_sentence = [] start_time = word_data['start'] # Update the start time for the next sentence sentence_id += 1 # Increment sentence ID # Handle any remaining words if necessary if temp: sentence = " ".join(temp) sentence = fix_punctuation(sentence) # Fix punctuation in the sentence data[sentence_id] = { 'text': sentence, 'duration': end_time - start_time, 'start': start_time, 'end': end_time, 'words': words_in_sentence } # Write data to JSON file with open(json_file_name, 'w') as json_file: json.dump(data, json_file, indent=4) return json_file_name import os def modify_filename(save_path: str, prefix: str = ""): directory, filename = os.path.split(save_path) name, ext = os.path.splitext(filename) new_filename = f"{prefix}{name}{ext}" return os.path.join(directory, new_filename) import shutil def save_current_data(): if os.path.exists("./last"): shutil.rmtree("./last") os.makedirs("./last",exist_ok=True) def KOKORO_TTS_API(text, Language="American English",voice="af_bella", speed=1,translate_text=False,remove_silence=False,keep_silence_up_to=0.05): if translate_text: text=bulk_translate(text, Language, chunk_size=500) save_path,timestamps=generate_and_save_audio(text=text, Language=Language,voice=voice, speed=speed,remove_silence=remove_silence,keep_silence_up_to=keep_silence_up_to) if remove_silence==False: if Language in ["American English", "British English"]: word_level_timestamps=adjust_timestamps(timestamps) word_level_srt = modify_filename(save_path.replace(".wav", ".srt"), prefix="word_level_") normal_srt = modify_filename(save_path.replace(".wav", ".srt"), prefix="sentence_") json_file = modify_filename(save_path.replace(".wav", ".json"), prefix="duration_") write_word_srt(word_level_timestamps, output_file=word_level_srt, skip_punctuation=True) write_sentence_srt(word_level_timestamps, output_file=normal_srt, min_pause=0.01) make_json(word_level_timestamps, json_file) save_current_data() shutil.copy(save_path, "./last/") shutil.copy(word_level_srt, "./last/") shutil.copy(normal_srt, "./last/") shutil.copy(json_file, "./last/") return save_path,save_path,word_level_srt,normal_srt,json_file return save_path,save_path,None,None,None def toggle_autoplay(autoplay): return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay) lang_list = ['American English', 'British English', 'Hindi', 'Spanish', 'French', 'Italian', 'Brazilian Portuguese', 'Japanese', 'Mandarin Chinese'] voice_names = get_voice_names("hexgrad/Kokoro-82M") def ui(): # Define examples in the format you mentioned dummy_examples = [ ["Hey, y'all, let’s grab some coffee and catch up!", "American English", "af_bella"], ["I'd like a large coffee, please.", "British English", "bf_isabella"], ["नमस्ते, कैसे हो?", "Hindi", "hf_alpha"], ["Hola, ¿cómo estás?", "Spanish", "ef_dora"], ["Bonjour, comment ça va?", "French", "ff_siwis"], ["Ciao, come stai?", "Italian", "if_sara"], ["Olá, como você está?", "Brazilian Portuguese", "pf_dora"], ["こんにちは、お元気ですか?", "Japanese", "jf_nezumi"], ["你好,你怎么样?", "Mandarin Chinese", "zf_xiaoni"] ] with gr.Blocks() as demo: # gr.Markdown("

KOKORO TTS

") # Larger title with CSS gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/Kokoro-TTS-Subtitle)") with gr.Row(): with gr.Column(): text = gr.Textbox(label='📝 Enter Text', lines=3) with gr.Row(): language_name = gr.Dropdown(lang_list, label="🌍 Select Language", value=lang_list[0]) with gr.Row(): voice_name = gr.Dropdown(voice_names, label="🎙️ Choose VoicePack", value='af_heart')#voice_names[0]) with gr.Row(): generate_btn = gr.Button('🚀 Generate', variant='primary') with gr.Accordion('🎛️ Audio Settings', open=False): speed = gr.Slider(minimum=0.25, maximum=2, value=1, step=0.1, label='⚡️Speed', info='Adjust the speaking speed') translate_text = gr.Checkbox(value=False, label='🌐 Translate Text to Selected Language') remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS') with gr.Column(): audio = gr.Audio(interactive=False, label='🔊 Output Audio', autoplay=True) audio_file = gr.File(label='📥 Download Audio') # word_level_srt_file = gr.File(label='Download Word-Level SRT') # srt_file = gr.File(label='Download Sentence-Level SRT') # sentence_duration_file = gr.File(label='Download Sentence Duration JSON') with gr.Accordion('🎬 Autoplay, Subtitle, Timestamp', open=False): autoplay = gr.Checkbox(value=True, label='▶️ Autoplay') autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio]) word_level_srt_file = gr.File(label='📝 Download Word-Level SRT') srt_file = gr.File(label='📜 Download Sentence-Level SRT') sentence_duration_file = gr.File(label='⏳ Download Sentence Timestamp JSON') text.submit(KOKORO_TTS_API, inputs=[text, language_name, voice_name, speed,translate_text, remove_silence], outputs=[audio, audio_file,word_level_srt_file,srt_file,sentence_duration_file]) generate_btn.click(KOKORO_TTS_API, inputs=[text, language_name, voice_name, speed,translate_text, remove_silence], outputs=[audio, audio_file,word_level_srt_file,srt_file,sentence_duration_file]) # Add examples to the interface gr.Examples(examples=dummy_examples, inputs=[text, language_name, voice_name]) return demo def tutorial(): # Markdown explanation for language code explanation = """ ## Language Code Explanation: Example: `'af_bella'` - **'a'** stands for **American English**. - **'f_'** stands for **Female** (If it were 'm_', it would mean Male). - **'bella'** refers to the specific voice. The first character in the voice code stands for the language: - **"a"**: American English - **"b"**: British English - **"h"**: Hindi - **"e"**: Spanish - **"f"**: French - **"i"**: Italian - **"p"**: Brazilian Portuguese - **"j"**: Japanese - **"z"**: Mandarin Chinese The second character stands for gender: - **"f_"**: Female - **"m_"**: Male """ with gr.Blocks() as demo2: # gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/kokoro_v1)") gr.Markdown(explanation) # Display the explanation return demo2 #@title subtitle import os import re import uuid import shutil import platform import datetime import subprocess import pysrt import librosa import soundfile as sf from tqdm.auto import tqdm from pydub import AudioSegment from deep_translator import GoogleTranslator # ---------------------- Utility Functions ---------------------- def get_current_time(): return datetime.datetime.now().strftime("%I_%M_%p") def get_subtitle_Dub_path(srt_file_path, Language): file_name = os.path.splitext(os.path.basename(srt_file_path))[0] full_base_path = os.path.join(os.getcwd(), "TTS_DUB") os.makedirs(full_base_path, exist_ok=True) random_string = str(uuid.uuid4())[:6] lang = language_map_local.get(Language, Language.replace(" ", "_")) new_path = os.path.join(full_base_path, f"{file_name}_{lang}_{random_string}.wav") return new_path.replace("__", "_") def clean_srt(input_path): def clean_srt_line(text): for bad in ["[", "]", "♫"]: text = text.replace(bad, "") return text.strip() subs = pysrt.open(input_path, encoding='utf-8') output_path = input_path.lower().replace(".srt", "") + "_.srt" with open(output_path, "w", encoding='utf-8') as file: for sub in subs: file.write(f"{sub.index}\n{sub.start} --> {sub.end}\n{clean_srt_line(sub.text)}\n\n") return output_path def translate_srt(input_path, target_language="Hindi", max_segments=500, chunk_size=4000): output_path = input_path.replace(".srt", f"{target_language}.srt") subs = pysrt.open(input_path, encoding='utf-8') if len(subs) > max_segments: gr.Warning(f"Too many segments: {len(subs)} > {max_segments}. Skipping translation.") return input_path original = [f"<#{i}>{s.text}" for i, s in enumerate(subs)] full_text = "\n".join(original) chunks, start = [], 0 while start < len(full_text): end = start + chunk_size split_point = full_text.rfind("<#", start, end) if end < len(full_text) else len(full_text) chunks.append(full_text[start:split_point]) start = split_point lang_code = language_map_local.get(target_language, "en") translated_chunks = [GoogleTranslator(target=lang_code).translate(chunk) for chunk in chunks] translated_text = "\n".join(translated_chunks) pattern = re.compile(r"<#(\d+)>(.*?)(?=<#\d+>|$)", re.DOTALL) translated_dict = {int(i): txt.strip() for i, txt in pattern.findall(translated_text)} for i, sub in enumerate(subs): sub.text = translated_dict.get(i, sub.text) subs.save(output_path, encoding='utf-8') return output_path def prepare_srt(srt_path, target_language, translate=False): path = clean_srt(srt_path) return translate_srt(path, target_language) if translate else path def is_ffmpeg_installed(): ffmpeg_exe = "ffmpeg.exe" if platform.system() == "Windows" else "ffmpeg" try: subprocess.run([ffmpeg_exe, "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True) return True, ffmpeg_exe except Exception: gr.Warning("FFmpeg not found. Falling back to librosa for audio speedup.", duration=20) return False, ffmpeg_exe def speedup_audio_librosa(input_file, output_file, speedup_factor): try: y, sr = librosa.load(input_file, sr=None) y_stretched = librosa.effects.time_stretch(y, rate=speedup_factor) sf.write(output_file, y_stretched, sr) except Exception as e: gr.Warning(f"Librosa speedup failed: {e}") shutil.copy(input_file, output_file) def change_speed(input_file, output_file, speedup_factor, use_ffmpeg, ffmpeg_path): if use_ffmpeg: try: subprocess.run([ffmpeg_path, "-i", input_file, "-filter:a", f"atempo={speedup_factor}", output_file, "-y"], check=True) except Exception as e: gr.Error(f"FFmpeg speedup error: {e}") speedup_audio_librosa(input_file, output_file, speedup_factor) else: speedup_audio_librosa(input_file, output_file, speedup_factor) def remove_edge_silence(input_path, output_path): y, sr = librosa.load(input_path, sr=None) trimmed_audio, _ = librosa.effects.trim(y, top_db=30) sf.write(output_path, trimmed_audio, sr) return output_path # ---------------------- Main Class ---------------------- class SRTDubbing: def __init__(self, use_ffmpeg=True, ffmpeg_path="ffmpeg"): self.use_ffmpeg = use_ffmpeg self.ffmpeg_path = ffmpeg_path self.cache_dir = "./cache" os.makedirs("./dummy", exist_ok=True) os.makedirs(self.cache_dir, exist_ok=True) @staticmethod def convert_to_millisecond(t): return t.hours * 3600000 + t.minutes * 60000 + t.seconds * 1000 + int(t.milliseconds) @staticmethod def read_srt_file(file_path): subs = pysrt.open(file_path, encoding='utf-8') entries = [] prev_end = 0 for idx, sub in enumerate(subs, 1): start, end = SRTDubbing.convert_to_millisecond(sub.start), SRTDubbing.convert_to_millisecond(sub.end) pause = start - prev_end if idx > 1 else start entries.append({ 'entry_number': idx, 'start_time': start, 'end_time': end, 'text': sub.text.strip(), 'pause_time': pause, 'audio_name': f"{idx}.wav", 'previous_pause': f"{idx}_before_pause.wav", }) prev_end = end return entries def text_to_speech_srt(self, text, audio_path, language, voice, actual_duration): temp = "./cache/temp.wav" # Step 1: Generate initial audio path, _ = generate_and_save_audio(text, Language=language, voice=voice, speed=1, remove_silence=False, keep_silence_up_to=0.05) # ✂️ Remove leading and trailing silence to make timing tight without trimming actual speech. remove_edge_silence(path, temp) # 📏 Load the trimmed audio and get its duration in milliseconds. audio = AudioSegment.from_file(temp) # ⏱️ If no duration is specified (edge case), use the TTS as-is without speed/timing adjustments. if actual_duration == 0: shutil.move(temp, audio_path) return # Step 2: If TTS audio is longer, retry with remove_silence=True if len(audio) > actual_duration: path, _ = generate_and_save_audio(text, Language=language, voice=voice, speed=1, remove_silence=True, keep_silence_up_to=0.05) remove_edge_silence(path, temp) audio = AudioSegment.from_file(temp) # Step 3: If still longer → speed up if len(audio) > actual_duration: factor = len(audio) / actual_duration path, _ = generate_and_save_audio(text, Language=language, voice=voice, speed=factor, remove_silence=True, keep_silence_up_to=0.05) remove_edge_silence(path, temp) audio = AudioSegment.from_file(temp) # Final Adjustment: Speed up via FFmpeg or librosa if len(audio) > actual_duration: factor = len(audio) / actual_duration final_temp = "./cache/speedup_temp.wav" change_speed(temp, final_temp, factor, self.use_ffmpeg, self.ffmpeg_path) shutil.move(final_temp, audio_path) # Add silence if too short elif len(audio) < actual_duration: silence = AudioSegment.silent(duration=actual_duration - len(audio)) (audio + silence).export(audio_path, format="wav") # ➡️ Fallback: If TTS already perfectly matches subtitle duration, save as-is. else: shutil.move(temp, audio_path) #bad code @staticmethod def make_silence(duration, path): AudioSegment.silent(duration=duration).export(path, format="wav") @staticmethod def create_folder_for_srt(srt_file_path): base = os.path.splitext(os.path.basename(srt_file_path))[0] folder = f"./dummy/{base}_{str(uuid.uuid4())[:4]}" os.makedirs(folder, exist_ok=True) return folder @staticmethod def concatenate_audio_files(paths, output): audio = sum([AudioSegment.from_file(p) for p in paths], AudioSegment.silent(duration=0)) audio.export(output, format="wav") def srt_to_dub(self, srt_path, output_path, language, voice): entries = self.read_srt_file(srt_path) folder = self.create_folder_for_srt(srt_path) all_audio = [] for entry in tqdm(entries): self.make_silence(entry['pause_time'], os.path.join(folder, entry['previous_pause'])) all_audio.append(os.path.join(folder, entry['previous_pause'])) tts_path = os.path.join(folder, entry['audio_name']) self.text_to_speech_srt(entry['text'], tts_path, language, voice, entry['end_time'] - entry['start_time']) all_audio.append(tts_path) self.concatenate_audio_files(all_audio, output_path) # ---------------------- Entrypoint ---------------------- def srt_process(srt_path, Language="American English", voice_name="af_bella", translate=False): if not srt_path.endswith(".srt"): gr.Error("Please upload a valid .srt file", duration=5) return None use_ffmpeg, ffmpeg_path = is_ffmpeg_installed() processed_srt = prepare_srt(srt_path, Language, translate) output_path = get_subtitle_Dub_path(srt_path, Language) SRTDubbing(use_ffmpeg, ffmpeg_path).srt_to_dub(processed_srt, output_path, Language, voice_name) return output_path,output_path def subtitle_ui(): with gr.Blocks() as demo: gr.Markdown( """ # Generate Audio File From Subtitle [Upload Only .srt file] To generate subtitles, you can use the [Whisper Turbo Subtitle](https://github.com/NeuralFalconYT/Whisper-Turbo-Subtitle) """ ) with gr.Row(): with gr.Column(): srt_file = gr.File(label='Upload .srt Subtitle File Only') # with gr.Row(): language_name = gr.Dropdown(lang_list, label="🌍 Select Language", value=lang_list[0]) # with gr.Row(): voice = gr.Dropdown( voice_names, value='af_bella', allow_custom_value=False, label='🎙️ Choose VoicePack', ) with gr.Row(): generate_btn_ = gr.Button('Generate', variant='primary') with gr.Accordion('Other Settings', open=False): translate_text = gr.Checkbox(value=False, label='🌐 Translate Subtitle to Selected Language') with gr.Column(): audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True) audio_file = gr.File(label='📥 Download Audio') with gr.Accordion('Enable Autoplay', open=False): autoplay = gr.Checkbox(value=True, label='Autoplay') autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio]) # srt_file.submit( # srt_process, # inputs=[srt_file, voice], # outputs=[audio] # ) generate_btn_.click( srt_process, inputs=[srt_file,language_name,voice,translate_text], outputs=[audio,audio_file] ) return demo # Example usage: # srt_file_path = "/content/me.srt" # dub_audio_path = srt_process(srt_file_path, Language="American English", voice_name="af_bella", translate=False) # print(f"Audio file saved at: {dub_audio_path}") import click @click.command() @click.option("--debug", is_flag=True, default=False, help="Enable debug mode.") @click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.") def main(debug, share): # def main(debug=True, share=True): demo1 = ui() demo2 = subtitle_ui() demo3 = tutorial() demo = gr.TabbedInterface([demo1, demo2,demo3],["Multilingual TTS","SRT Dubbing","VoicePack Explanation"],title="Kokoro TTS")#,theme='JohnSmith9982/small_and_pretty') demo.queue().launch(debug=debug, share=share) # demo.queue().launch(debug=debug, share=share,server_port=9000) #Run on local network # laptop_ip="192.168.0.30" # port=8080 # demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port) # Initialize default pipeline last_used_language = "a" pipeline = KPipeline(lang_code=last_used_language) temp_folder = create_audio_dir() if __name__ == "__main__": main()