File size: 2,993 Bytes
58407db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import cv2
import numpy as np
import os
import zipfile
import uuid
import gradio as gr



def remove_watermark_area(original_image, text_mask_path):
    # Ensure the mask is binary
    text_mask = cv2.imread(text_mask_path, cv2.IMREAD_GRAYSCALE)
    _, binary_mask = cv2.threshold(text_mask, 1, 255, cv2.THRESH_BINARY)

    # Resize the mask to match the size of the original image area
    mask_resized = cv2.resize(binary_mask, (original_image.shape[1], original_image.shape[0]))

    # Expand the mask to cover more area if needed
    kernel = np.ones((5, 5), np.uint8)
    expanded_mask = cv2.dilate(mask_resized, kernel, iterations=1)

    # Inpainting using the mask
    inpainted_image = cv2.inpaint(original_image, expanded_mask, inpaintRadius=5, flags=cv2.INPAINT_TELEA)

    # Optionally apply post-processing to improve results
    cleaned_image = cv2.GaussianBlur(inpainted_image, (3, 3), 0)

    return cleaned_image

def remove_watermark(image_path,saved_path):
    # Load the original image
    image = cv2.imread(image_path)

    # Define the area of the watermark (adjust this based on the watermark size)
    height, width, _ = image.shape
    watermark_width = 185  # Adjust based on your watermark size
    watermark_height = 185  # Adjust based on your watermark size
    x_start = 50
    y_start = height - watermark_height+17
    x_end = watermark_width-17
    y_end = height-50

    # Extract the watermark area
    watermark_area = image[y_start:y_end, x_start:x_end]
    # cv2.imwrite('watermark_area.jpg', watermark_area)

    # Create the mask for the watermark area
    text_mask_path = 'watermark_mask.png'
    cleaned_image = remove_watermark_area(watermark_area, text_mask_path)
    # cv2.imwrite('cleaned_watermark.jpg', cleaned_image)
    # Paste back the cleaned watermark on the original image
    image[y_start:y_end, x_start:x_end] = cleaned_image
    cv2.imwrite(saved_path, image)
    return image

def make_zip(image_list):
    zip_path = f"./temp/{uuid.uuid4().hex[:6]}.zip"
    with zipfile.ZipFile(zip_path, 'w') as zipf:
        for image in image_list:
            zipf.write(image, os.path.basename(image))
    return zip_path

def process_files(image_files):
    image_list = []
    if len(image_files) == 1:
        saved_path = os.path.basename(image_files[0])
        saved_path = f"./temp/{saved_path}"
        remove_watermark(image_files[0], saved_path)
        return saved_path, saved_path
    else:
        for image_path in image_files:
            saved_path = os.path.basename(image_path)
            saved_path = f"./temp/{saved_path}"
            remove_watermark(image_path, saved_path)
            image_list.append(saved_path)
        zip_path = make_zip(image_list)
        return zip_path,None

if not os.path.exists("./temp"):
    os.mkdir("./temp")

demo = gr.Interface(
    process_files,
    [gr.File(type='filepath', file_count='multiple')],
    [gr.File(),gr.Image()],
    cache_examples=True
)

demo.launch(debug=True)