File size: 4,822 Bytes
58407db
 
 
 
 
 
87fbf2d
58407db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673bd17
58407db
 
673bd17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58407db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87fbf2d
 
 
 
 
673bd17
 
 
 
 
 
58407db
 
 
87fbf2d
 
 
58407db
 
 
 
87fbf2d
 
 
58407db
 
 
 
 
673bd17
58407db
 
 
673bd17
 
 
f977cc3
 
673bd17
 
 
 
 
 
 
 
58407db
f977cc3
 
58407db
 
 
673bd17
58407db
673bd17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import cv2
import numpy as np
import os
import zipfile
import uuid
import gradio as gr
import uuid


def remove_watermark_area(original_image, text_mask_path):
    # Ensure the mask is binary
    text_mask = cv2.imread(text_mask_path, cv2.IMREAD_GRAYSCALE)
    _, binary_mask = cv2.threshold(text_mask, 1, 255, cv2.THRESH_BINARY)

    # Resize the mask to match the size of the original image area
    mask_resized = cv2.resize(binary_mask, (original_image.shape[1], original_image.shape[0]))

    # Expand the mask to cover more area if needed
    kernel = np.ones((5, 5), np.uint8)
    expanded_mask = cv2.dilate(mask_resized, kernel, iterations=1)

    # Inpainting using the mask
    inpainted_image = cv2.inpaint(original_image, expanded_mask, inpaintRadius=5, flags=cv2.INPAINT_TELEA)

    # Optionally apply post-processing to improve results
    cleaned_image = cv2.GaussianBlur(inpainted_image, (3, 3), 0)

    return cleaned_image
from PIL import Image

def remove_watermark(image_path,saved_path):
    if isinstance(image_path, str) and os.path.isfile(image_path):
        # Load the image using OpenCV
        image = cv2.imread(image_path) 
    elif isinstance(image_path, np.ndarray):
        # Directly use OpenCV image (NumPy array)
        image = image_path
        if len(image_path.shape) == 3 and image_path.shape[2] == 3:
            # Assuming it's in RGB format; convert to BGR
            image = cv2.cvtColor(image_path, cv2.COLOR_RGB2BGR)
        else:
            # Otherwise, assume it's already in BGR format
            image = image_path
    else:
        raise TypeError("Invalid image_path format")
    print(type(image))
    cv2.imwrite("test.jpg",image)
    image=cv2.resize(image,(1280,1280))
    # Define the area of the watermark (adjust this based on the watermark size)
    height, width, _ = image.shape
    watermark_width = 185  # Adjust based on your watermark size
    watermark_height = 185  # Adjust based on your watermark size
    x_start = 50
    y_start = height - watermark_height+17
    x_end = watermark_width-17
    y_end = height-50

    # Extract the watermark area
    watermark_area = image[y_start:y_end, x_start:x_end]
    # cv2.imwrite('watermark_area.jpg', watermark_area)

    # Create the mask for the watermark area
    text_mask_path = 'watermark_mask.png'
    cleaned_image = remove_watermark_area(watermark_area, text_mask_path)
    # cv2.imwrite('cleaned_watermark.jpg', cleaned_image)
    # Paste back the cleaned watermark on the original image
    image[y_start:y_end, x_start:x_end] = cleaned_image
    cv2.imwrite(saved_path, image)
    return image

def make_zip(image_list):
    zip_path = f"./temp/{uuid.uuid4().hex[:6]}.zip"
    with zipfile.ZipFile(zip_path, 'w') as zipf:
        for image in image_list:
            zipf.write(image, os.path.basename(image))
    return zip_path

def random_image_name():
    """Generate a random image name."""
    return str(uuid.uuid4())[:8]

    
def process_file(pil_image):
    saved_path = f"./temp/{random_image_name()}.jpg"
    remove_watermark(pil_image, saved_path)
    return saved_path, saved_path


def process_files(image_files):
    image_list = []
    if len(image_files) == 1:
        # saved_path = os.path.basename(image_files[0])
        # saved_path = f"./temp/{saved_path}"
        saved_path = f"./temp/{random_image_name()}.jpg"
        remove_watermark(image_files[0], saved_path)
        return saved_path, saved_path
    else:
        for image_path in image_files:
            # saved_path = os.path.basename(image_path)
            # saved_path = f"./temp/{saved_path}"
            saved_path = f"./temp/{random_image_name()}.jpg"
            remove_watermark(image_path, saved_path)
            image_list.append(saved_path)
        zip_path = make_zip(image_list)
        return zip_path,None


if not os.path.exists("./temp"):
    os.mkdir("./temp")


meta_examples = ["./images/1.jpg", "./images/2.jpg", "./images/3.jpg", "./images/4.jpg", "./images/5.jpg", "./images/6.jpg"]

gradio_input=[gr.Image(label='Upload an Image')]
gradio_Output=[gr.File(label='Download Image'),gr.Image(label='Display Image')]
gradio_interface = gr.Interface(fn=process_file, inputs=gradio_input,outputs=gradio_Output ,
                              title="Meta Watermark Remover",
                              examples=meta_examples)
# gradio_interface.launch(debug=True)



gradio_multiple_images = gr.Interface(
    process_files,
    [gr.File(type='filepath', file_count='multiple',label='Upload Images')],
    [gr.File(label='Download File'),gr.Image(label='Display Image')],
    cache_examples=True
)

demo = gr.TabbedInterface([gradio_interface, gradio_multiple_images], ["Meta Watermark Remover","Bluk Meta Watermark Remover"],title="Meta Watermark Remover")
demo.launch(debug=True)