NeuralFalcon's picture
Update app.py
87fbf2d verified
raw
history blame
3.23 kB
import cv2
import numpy as np
import os
import zipfile
import uuid
import gradio as gr
import uuid
def remove_watermark_area(original_image, text_mask_path):
# Ensure the mask is binary
text_mask = cv2.imread(text_mask_path, cv2.IMREAD_GRAYSCALE)
_, binary_mask = cv2.threshold(text_mask, 1, 255, cv2.THRESH_BINARY)
# Resize the mask to match the size of the original image area
mask_resized = cv2.resize(binary_mask, (original_image.shape[1], original_image.shape[0]))
# Expand the mask to cover more area if needed
kernel = np.ones((5, 5), np.uint8)
expanded_mask = cv2.dilate(mask_resized, kernel, iterations=1)
# Inpainting using the mask
inpainted_image = cv2.inpaint(original_image, expanded_mask, inpaintRadius=5, flags=cv2.INPAINT_TELEA)
# Optionally apply post-processing to improve results
cleaned_image = cv2.GaussianBlur(inpainted_image, (3, 3), 0)
return cleaned_image
def remove_watermark(image_path,saved_path):
# Load the original image
image = cv2.imread(image_path)
# Define the area of the watermark (adjust this based on the watermark size)
height, width, _ = image.shape
watermark_width = 185 # Adjust based on your watermark size
watermark_height = 185 # Adjust based on your watermark size
x_start = 50
y_start = height - watermark_height+17
x_end = watermark_width-17
y_end = height-50
# Extract the watermark area
watermark_area = image[y_start:y_end, x_start:x_end]
# cv2.imwrite('watermark_area.jpg', watermark_area)
# Create the mask for the watermark area
text_mask_path = 'watermark_mask.png'
cleaned_image = remove_watermark_area(watermark_area, text_mask_path)
# cv2.imwrite('cleaned_watermark.jpg', cleaned_image)
# Paste back the cleaned watermark on the original image
image[y_start:y_end, x_start:x_end] = cleaned_image
cv2.imwrite(saved_path, image)
return image
def make_zip(image_list):
zip_path = f"./temp/{uuid.uuid4().hex[:6]}.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for image in image_list:
zipf.write(image, os.path.basename(image))
return zip_path
def random_image_name():
"""Generate a random image name."""
return str(uuid.uuid4())[:8]
def process_files(image_files):
image_list = []
if len(image_files) == 1:
# saved_path = os.path.basename(image_files[0])
# saved_path = f"./temp/{saved_path}"
saved_path = f"./temp/{random_image_name()}.jpg"
remove_watermark(image_files[0], saved_path)
return saved_path, saved_path
else:
for image_path in image_files:
# saved_path = os.path.basename(image_path)
# saved_path = f"./temp/{saved_path}"
saved_path = f"./temp/{random_image_name()}.jpg"
remove_watermark(image_path, saved_path)
image_list.append(saved_path)
zip_path = make_zip(image_list)
return zip_path,None
if not os.path.exists("./temp"):
os.mkdir("./temp")
demo = gr.Interface(
process_files,
[gr.File(type='filepath', file_count='multiple')],
[gr.File(),gr.Image()],
cache_examples=True
)
demo.launch(debug=True)