File size: 20,176 Bytes
712b45c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import Parameter

from deepfillv2.network_utils import *


# -----------------------------------------------
#                Normal ConvBlock
# -----------------------------------------------
class Conv2dLayer(nn.Module):
    def __init__(

        self,

        in_channels,

        out_channels,

        kernel_size,

        stride=1,

        padding=0,

        dilation=1,

        pad_type="zero",

        activation="elu",

        norm="none",

        sn=False,

    ):
        super(Conv2dLayer, self).__init__()
        # Initialize the padding scheme
        if pad_type == "reflect":
            self.pad = nn.ReflectionPad2d(padding)
        elif pad_type == "replicate":
            self.pad = nn.ReplicationPad2d(padding)
        elif pad_type == "zero":
            self.pad = nn.ZeroPad2d(padding)
        else:
            assert 0, "Unsupported padding type: {}".format(pad_type)

        # Initialize the normalization type
        if norm == "bn":
            self.norm = nn.BatchNorm2d(out_channels)
        elif norm == "in":
            self.norm = nn.InstanceNorm2d(out_channels)
        elif norm == "ln":
            self.norm = LayerNorm(out_channels)
        elif norm == "none":
            self.norm = None
        else:
            assert 0, "Unsupported normalization: {}".format(norm)

        # Initialize the activation funtion
        if activation == "relu":
            self.activation = nn.ReLU(inplace=True)
        elif activation == "lrelu":
            self.activation = nn.LeakyReLU(0.2, inplace=True)
        elif activation == "elu":
            self.activation = nn.ELU(inplace=True)
        elif activation == "selu":
            self.activation = nn.SELU(inplace=True)
        elif activation == "tanh":
            self.activation = nn.Tanh()
        elif activation == "sigmoid":
            self.activation = nn.Sigmoid()
        elif activation == "none":
            self.activation = None
        else:
            assert 0, "Unsupported activation: {}".format(activation)

        # Initialize the convolution layers
        if sn:
            self.conv2d = SpectralNorm(
                nn.Conv2d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride,
                    padding=0,
                    dilation=dilation,
                )
            )
        else:
            self.conv2d = nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding=0,
                dilation=dilation,
            )

    def forward(self, x):
        x = self.pad(x)
        x = self.conv2d(x)
        if self.norm:
            x = self.norm(x)
        if self.activation:
            x = self.activation(x)
        return x


class TransposeConv2dLayer(nn.Module):
    def __init__(

        self,

        in_channels,

        out_channels,

        kernel_size,

        stride=1,

        padding=0,

        dilation=1,

        pad_type="zero",

        activation="lrelu",

        norm="none",

        sn=False,

        scale_factor=2,

    ):
        super(TransposeConv2dLayer, self).__init__()
        # Initialize the conv scheme
        self.scale_factor = scale_factor
        self.conv2d = Conv2dLayer(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            dilation,
            pad_type,
            activation,
            norm,
            sn,
        )

    def forward(self, x):
        x = F.interpolate(
            x,
            scale_factor=self.scale_factor,
            mode="nearest",
            recompute_scale_factor=False,
        )
        x = self.conv2d(x)
        return x


# -----------------------------------------------
#                Gated ConvBlock
# -----------------------------------------------
class GatedConv2d(nn.Module):
    def __init__(

        self,

        in_channels,

        out_channels,

        kernel_size,

        stride=1,

        padding=0,

        dilation=1,

        pad_type="reflect",

        activation="elu",

        norm="none",

        sn=False,

    ):
        super(GatedConv2d, self).__init__()
        # Initialize the padding scheme
        if pad_type == "reflect":
            self.pad = nn.ReflectionPad2d(padding)
        elif pad_type == "replicate":
            self.pad = nn.ReplicationPad2d(padding)
        elif pad_type == "zero":
            self.pad = nn.ZeroPad2d(padding)
        else:
            assert 0, "Unsupported padding type: {}".format(pad_type)

        # Initialize the normalization type
        if norm == "bn":
            self.norm = nn.BatchNorm2d(out_channels)
        elif norm == "in":
            self.norm = nn.InstanceNorm2d(out_channels)
        elif norm == "ln":
            self.norm = LayerNorm(out_channels)
        elif norm == "none":
            self.norm = None
        else:
            assert 0, "Unsupported normalization: {}".format(norm)

        # Initialize the activation funtion
        if activation == "relu":
            self.activation = nn.ReLU(inplace=True)
        elif activation == "lrelu":
            self.activation = nn.LeakyReLU(0.2, inplace=True)
        elif activation == "elu":
            self.activation = nn.ELU()
        elif activation == "selu":
            self.activation = nn.SELU(inplace=True)
        elif activation == "tanh":
            self.activation = nn.Tanh()
        elif activation == "sigmoid":
            self.activation = nn.Sigmoid()
        elif activation == "none":
            self.activation = None
        else:
            assert 0, "Unsupported activation: {}".format(activation)

        # Initialize the convolution layers
        if sn:
            self.conv2d = SpectralNorm(
                nn.Conv2d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride,
                    padding=0,
                    dilation=dilation,
                )
            )
            self.mask_conv2d = SpectralNorm(
                nn.Conv2d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride,
                    padding=0,
                    dilation=dilation,
                )
            )
        else:
            self.conv2d = nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding=0,
                dilation=dilation,
            )
            self.mask_conv2d = nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding=0,
                dilation=dilation,
            )
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x):
        x = self.pad(x)
        conv = self.conv2d(x)
        mask = self.mask_conv2d(x)
        gated_mask = self.sigmoid(mask)
        if self.activation:
            conv = self.activation(conv)
        x = conv * gated_mask
        return x


class TransposeGatedConv2d(nn.Module):
    def __init__(

        self,

        in_channels,

        out_channels,

        kernel_size,

        stride=1,

        padding=0,

        dilation=1,

        pad_type="zero",

        activation="lrelu",

        norm="none",

        sn=True,

        scale_factor=2,

    ):
        super(TransposeGatedConv2d, self).__init__()
        # Initialize the conv scheme
        self.scale_factor = scale_factor
        self.gated_conv2d = GatedConv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            dilation,
            pad_type,
            activation,
            norm,
            sn,
        )

    def forward(self, x):
        x = F.interpolate(
            x,
            scale_factor=self.scale_factor,
            mode="nearest",
            recompute_scale_factor=False,
        )
        x = self.gated_conv2d(x)
        return x


# ----------------------------------------
#               Layer Norm
# ----------------------------------------
class LayerNorm(nn.Module):
    def __init__(self, num_features, eps=1e-8, affine=True):
        super(LayerNorm, self).__init__()
        self.num_features = num_features
        self.affine = affine
        self.eps = eps

        if self.affine:
            self.gamma = Parameter(torch.Tensor(num_features).uniform_())
            self.beta = Parameter(torch.zeros(num_features))

    def forward(self, x):
        # layer norm
        shape = [-1] + [1] * (x.dim() - 1)  # for 4d input: [-1, 1, 1, 1]
        if x.size(0) == 1:
            # These two lines run much faster in pytorch 0.4 than the two lines listed below.
            mean = x.view(-1).mean().view(*shape)
            std = x.view(-1).std().view(*shape)
        else:
            mean = x.view(x.size(0), -1).mean(1).view(*shape)
            std = x.view(x.size(0), -1).std(1).view(*shape)
        x = (x - mean) / (std + self.eps)
        # if it is learnable
        if self.affine:
            shape = [1, -1] + [1] * (
                x.dim() - 2
            )  # for 4d input: [1, -1, 1, 1]
            x = x * self.gamma.view(*shape) + self.beta.view(*shape)
        return x


# -----------------------------------------------
#                  SpectralNorm
# -----------------------------------------------
def l2normalize(v, eps=1e-12):
    return v / (v.norm() + eps)


class SpectralNorm(nn.Module):
    def __init__(self, module, name="weight", power_iterations=1):
        super(SpectralNorm, self).__init__()
        self.module = module
        self.name = name
        self.power_iterations = power_iterations
        if not self._made_params():
            self._make_params()

    def _update_u_v(self):
        u = getattr(self.module, self.name + "_u")
        v = getattr(self.module, self.name + "_v")
        w = getattr(self.module, self.name + "_bar")

        height = w.data.shape[0]
        for _ in range(self.power_iterations):
            v.data = l2normalize(
                torch.mv(torch.t(w.view(height, -1).data), u.data)
            )
            u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))

        # sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
        sigma = u.dot(w.view(height, -1).mv(v))
        setattr(self.module, self.name, w / sigma.expand_as(w))

    def _made_params(self):
        try:
            u = getattr(self.module, self.name + "_u")
            v = getattr(self.module, self.name + "_v")
            w = getattr(self.module, self.name + "_bar")
            return True
        except AttributeError:
            return False

    def _make_params(self):
        w = getattr(self.module, self.name)

        height = w.data.shape[0]
        width = w.view(height, -1).data.shape[1]

        u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
        v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
        u.data = l2normalize(u.data)
        v.data = l2normalize(v.data)
        w_bar = Parameter(w.data)

        del self.module._parameters[self.name]

        self.module.register_parameter(self.name + "_u", u)
        self.module.register_parameter(self.name + "_v", v)
        self.module.register_parameter(self.name + "_bar", w_bar)

    def forward(self, *args):
        self._update_u_v()
        return self.module.forward(*args)


class ContextualAttention(nn.Module):
    def __init__(

        self,

        ksize=3,

        stride=1,

        rate=1,

        fuse_k=3,

        softmax_scale=10,

        fuse=True,

        use_cuda=True,

        device_ids=None,

    ):
        super(ContextualAttention, self).__init__()
        self.ksize = ksize
        self.stride = stride
        self.rate = rate
        self.fuse_k = fuse_k
        self.softmax_scale = softmax_scale
        self.fuse = fuse
        self.use_cuda = use_cuda
        self.device_ids = device_ids

    def forward(self, f, b, mask=None):
        """Contextual attention layer implementation.

            Contextual attention is first introduced in publication:

            Generative Image Inpainting with Contextual Attention, Yu et al.

        Args:

            f: Input feature to match (foreground).

            b: Input feature for match (background).

            mask: Input mask for b, indicating patches not available.

            ksize: Kernel size for contextual attention.

            stride: Stride for extracting patches from b.

            rate: Dilation for matching.

            softmax_scale: Scaled softmax for attention.

        Returns:

            torch.tensor: output

        """
        # get shapes
        raw_int_fs = list(f.size())  # b*c*h*w
        raw_int_bs = list(b.size())  # b*c*h*w

        # extract patches from background with stride and rate
        kernel = 2 * self.rate
        # raw_w is extracted for reconstruction
        raw_w = extract_image_patches(
            b,
            ksizes=[kernel, kernel],
            strides=[self.rate * self.stride, self.rate * self.stride],
            rates=[1, 1],
            padding="same",
        )  # [N, C*k*k, L]
        # raw_shape: [N, C, k, k, L] [4, 192, 4, 4, 1024]
        raw_w = raw_w.view(raw_int_bs[0], raw_int_bs[1], kernel, kernel, -1)
        raw_w = raw_w.permute(0, 4, 1, 2, 3)  # raw_shape: [N, L, C, k, k]
        raw_w_groups = torch.split(raw_w, 1, dim=0)

        # downscaling foreground option: downscaling both foreground and
        # background for matching and use original background for reconstruction.
        f = F.interpolate(
            f,
            scale_factor=1.0 / self.rate,
            mode="nearest",
            recompute_scale_factor=False,
        )
        b = F.interpolate(
            b,
            scale_factor=1.0 / self.rate,
            mode="nearest",
            recompute_scale_factor=False,
        )
        int_fs = list(f.size())  # b*c*h*w
        int_bs = list(b.size())
        f_groups = torch.split(
            f, 1, dim=0
        )  # split tensors along the batch dimension
        # w shape: [N, C*k*k, L]
        w = extract_image_patches(
            b,
            ksizes=[self.ksize, self.ksize],
            strides=[self.stride, self.stride],
            rates=[1, 1],
            padding="same",
        )
        # w shape: [N, C, k, k, L]
        w = w.view(int_bs[0], int_bs[1], self.ksize, self.ksize, -1)
        w = w.permute(0, 4, 1, 2, 3)  # w shape: [N, L, C, k, k]
        w_groups = torch.split(w, 1, dim=0)

        # process mask
        mask = F.interpolate(
            mask,
            scale_factor=1.0 / self.rate,
            mode="nearest",
            recompute_scale_factor=False,
        )
        int_ms = list(mask.size())
        # m shape: [N, C*k*k, L]
        m = extract_image_patches(
            mask,
            ksizes=[self.ksize, self.ksize],
            strides=[self.stride, self.stride],
            rates=[1, 1],
            padding="same",
        )

        # m shape: [N, C, k, k, L]
        m = m.view(int_ms[0], int_ms[1], self.ksize, self.ksize, -1)
        m = m.permute(0, 4, 1, 2, 3)  # m shape: [N, L, C, k, k]
        m = m[0]  # m shape: [L, C, k, k]
        # mm shape: [L, 1, 1, 1]
        mm = (reduce_mean(m, axis=[1, 2, 3], keepdim=True) == 0.0).to(
            torch.float32
        )
        mm = mm.permute(1, 0, 2, 3)  # mm shape: [1, L, 1, 1]

        y = []
        offsets = []
        k = self.fuse_k
        scale = (
            self.softmax_scale
        )  # to fit the PyTorch tensor image value range
        fuse_weight = torch.eye(k).view(1, 1, k, k)  # 1*1*k*k
        if self.use_cuda:
            fuse_weight = fuse_weight.cuda()

        for xi, wi, raw_wi in zip(f_groups, w_groups, raw_w_groups):
            """

            O => output channel as a conv filter

            I => input channel as a conv filter

            xi : separated tensor along batch dimension of front; (B=1, C=128, H=32, W=32)

            wi : separated patch tensor along batch dimension of back; (B=1, O=32*32, I=128, KH=3, KW=3)

            raw_wi : separated tensor along batch dimension of back; (B=1, I=32*32, O=128, KH=4, KW=4)

            """
            # conv for compare
            escape_NaN = torch.FloatTensor([1e-4])
            if self.use_cuda:
                escape_NaN = escape_NaN.cuda()
            wi = wi[0]  # [L, C, k, k]
            max_wi = torch.sqrt(
                reduce_sum(
                    torch.pow(wi, 2) + escape_NaN, axis=[1, 2, 3], keepdim=True
                )
            )
            wi_normed = wi / max_wi
            # xi shape: [1, C, H, W], yi shape: [1, L, H, W]
            xi = same_padding(
                xi, [self.ksize, self.ksize], [1, 1], [1, 1]
            )  # xi: 1*c*H*W
            yi = F.conv2d(xi, wi_normed, stride=1)  # [1, L, H, W]
            # conv implementation for fuse scores to encourage large patches
            if self.fuse:
                # make all of depth to spatial resolution
                yi = yi.view(
                    1, 1, int_bs[2] * int_bs[3], int_fs[2] * int_fs[3]
                )  # (B=1, I=1, H=32*32, W=32*32)
                yi = same_padding(yi, [k, k], [1, 1], [1, 1])
                yi = F.conv2d(
                    yi, fuse_weight, stride=1
                )  # (B=1, C=1, H=32*32, W=32*32)
                yi = yi.contiguous().view(
                    1, int_bs[2], int_bs[3], int_fs[2], int_fs[3]
                )  # (B=1, 32, 32, 32, 32)
                yi = yi.permute(0, 2, 1, 4, 3)
                yi = yi.contiguous().view(
                    1, 1, int_bs[2] * int_bs[3], int_fs[2] * int_fs[3]
                )
                yi = same_padding(yi, [k, k], [1, 1], [1, 1])
                yi = F.conv2d(yi, fuse_weight, stride=1)
                yi = yi.contiguous().view(
                    1, int_bs[3], int_bs[2], int_fs[3], int_fs[2]
                )
                yi = yi.permute(0, 2, 1, 4, 3).contiguous()
            yi = yi.view(
                1, int_bs[2] * int_bs[3], int_fs[2], int_fs[3]
            )  # (B=1, C=32*32, H=32, W=32)
            # softmax to match
            yi = yi * mm
            yi = F.softmax(yi * scale, dim=1)
            yi = yi * mm  # [1, L, H, W]

            offset = torch.argmax(yi, dim=1, keepdim=True)  # 1*1*H*W

            if int_bs != int_fs:
                # Normalize the offset value to match foreground dimension
                times = float(int_fs[2] * int_fs[3]) / float(
                    int_bs[2] * int_bs[3]
                )
                offset = ((offset + 1).float() * times - 1).to(torch.int64)
            offset = torch.cat(
                [offset // int_fs[3], offset % int_fs[3]], dim=1
            )  # 1*2*H*W

            # deconv for patch pasting
            wi_center = raw_wi[0]
            # yi = F.pad(yi, [0, 1, 0, 1])    # here may need conv_transpose same padding
            yi = (
                F.conv_transpose2d(yi, wi_center, stride=self.rate, padding=1)
                / 4.0
            )  # (B=1, C=128, H=64, W=64)
            y.append(yi)
            offsets.append(offset)

        y = torch.cat(y, dim=0)  # back to the mini-batch
        y.contiguous().view(raw_int_fs)

        return y