NeuralFalcon's picture
Update app.py
910e15a verified
import gradio as gr
import numpy as np
import imageio
import cv2
import numpy as np
from inpaint import InpaintingTester
import os
import shutil
import re
import uuid
def create_mask(watermark, mask_type="white"):
"""
Create a mask for the watermark region.
mask_type: 'white' for white mask and 'black' for black mask
"""
h, w, _ = watermark.shape
if mask_type == "white":
return np.ones((h, w), dtype=np.uint8) * 255 # White mask
elif mask_type == "black":
return np.zeros((h, w), dtype=np.uint8) # Black mask
return None
def inpaint_watermark(watermark, mask):
"""Inpaint the watermark region using the mask."""
return cv2.inpaint(watermark, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
def place_inpainted_back(image, inpainted_region, location):
"""Place the inpainted region back into the original image."""
x_start, y_start, x_end, y_end = location
image[y_start:y_end, x_start:x_end] = inpainted_region
return image
def extract_watermark(image, height_ratio=0.15, width_ratio=0.15, margin=0):
"""Extract watermark from the image using given ratios and margin."""
h, w, _ = image.shape
crop_h, crop_w = int(h * height_ratio), int(w * width_ratio)
x_start, y_start = w - crop_w, h - crop_h
watermark = image[y_start:h-margin, x_start:w-margin]
location = (x_start, y_start, w-margin, h-margin)
return watermark, location
def load_inpainting_model():
"""Load the inpainting model."""
save_path = "./output"
# resize_to = None # Default size from config
resize_to = (480,480)
return InpaintingTester(save_path, resize_to)
def process_image_with_model(image_path, mask_path, tester):
"""Process the image using the inpainting model and return the cleaned image path."""
image_mask_pairs = [(image_path, mask_path)]
return tester.process_multiple_images(image_mask_pairs)[0]
def img_file_name(image_path):
global image_folder
text=os.path.basename(image_path)
text=text.split(".")[0]
# Remove all non-alphabetic characters and convert to lowercase
text = re.sub(r'[^a-zA-Z\s]', '', text) # Retain only alphabets and spaces
text = text.lower().strip() # Convert to lowercase and strip leading/trailing spaces
text = text.replace(" ", "_") # Replace spaces with underscores
# Truncate or handle empty text
truncated_text = text[:25] if len(text) > 25 else text if len(text) > 0 else "empty"
# Generate a random string for uniqueness
random_string = uuid.uuid4().hex[:8].upper()
# Construct the file name
file_name = f"{image_folder}/{truncated_text}_{random_string}.png"
return file_name
def logo_remover(image_path):
image = cv2.imread(image_path)
image = cv2.resize(image, (1280, 1280)) # Resize image if needed
# Extract watermark and location
first_crop, first_location = extract_watermark(image, 0.50, 0.50, 0)
watermark, location = extract_watermark(first_crop, 0.12, 0.26, 27) #height, side, margin
# Create black and white masks
mask1 = create_mask(first_crop, "black")
mask2 = create_mask(watermark, "white")
combined_mask = place_inpainted_back(mask1, mask2, location)
# Save temporary files
input_image = "./input/temp.png"
input_mask = "./input/temp_mask.png"
# temp_image = cv2.resize(first_crop, (512, 512))
temp_image=first_crop
cv2.imwrite(input_image, temp_image)
# temp_mask = cv2.resize(combined_mask, (512, 512))
temp_mask=combined_mask
cv2.imwrite(input_mask, temp_mask)
clean_image_path = process_image_with_model(input_image, input_mask, tester)
# Check if the image was loaded correctly
if clean_image_path is None:
print(f"Failed to load image: {clean_image_path}")
return # Or handle the error accordingly
clean_image = cv2.imread(clean_image_path)
clean_image = cv2.resize(clean_image, (combined_mask.shape[1], combined_mask.shape[0]))
result_image = place_inpainted_back(image, clean_image, first_location)
save_path=img_file_name(image_path)
cv2.imwrite(save_path, result_image)
return save_path
# Define a function to handle the image editing and return the final result
def process_and_return(im):
global tester
# Save the composite image (base image) and mask to files
base_image_path = "base_image.png"
mask_image_path = "mask_image.png"
# Save the composite image (base image)
imageio.imwrite(base_image_path, im["composite"])
# Extract the alpha channel (mask)
alpha_channel = im["layers"][0][:, :, 3]
# Create the mask: white (255) where drawn, black (0) elsewhere
mask = np.zeros_like(alpha_channel, dtype=np.uint8)
mask[alpha_channel > 0] = 255 # Set drawn areas to white (255)
# Save the mask image
imageio.imwrite(mask_image_path, mask)
# Process the images using the inpainting model
final_result = process_image_with_model(base_image_path, mask_image_path,tester)
# Return the processed image
return final_result
def ui_3():
# Create a Gradio app
with gr.Blocks() as demo:
gr.Markdown("Manually Select the area.")
with gr.Row():
# Create an ImageEditor component for uploading and editing the image
im = gr.ImageEditor(
type="numpy",
canvas_size=(1, 1), # Use canvas_size instead of crop_size
layers=True, # Allow layers in the editor
transforms=["crop"], # Allow cropping
format="png", # Save images in PNG format
label="Base Image",
show_label=True
)
# Create an Image component to display the processed result
im2 = gr.Image(label="Processed Image", show_label=True)
# Create a Button to trigger the image processing
btn = gr.Button("Process Image")
# Define an event listener to trigger the image processing when the button is clicked
btn.click(process_and_return, inputs=im, outputs=im2) # Output processed image
return demo
# def handle_pil_image(image):
# logo_remover(image)
def ui_1():
test_examples=[["./input/cat.jpg","./input/shark.jpg","./input/elephant.jpg"]]
gradio_input=[gr.Image(label='Upload an Image',type="filepath")]
gradio_Output=[gr.Image(label='Display Image')]
gradio_interface = gr.Interface(fn=logo_remover, inputs=gradio_input,outputs=gradio_Output ,
title="Meta Watermark Remover For Single image",
examples=test_examples)
return gradio_interface
from PIL import Image
import zipfile
def make_zip(image_list):
zip_path = f"./temp/images/{uuid.uuid4().hex[:6]}.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for image in image_list:
zipf.write(image, os.path.basename(image))
return zip_path
def handle_multiple_files(image_files):
image_list = []
if len(image_files) == 1:
saved_path=logo_remover(image_files[0])
return saved_path
else:
for image_path in image_files:
saved_path=logo_remover(image_path)
image_list.append(saved_path)
zip_path = make_zip(image_list)
return zip_path
def ui_2():
gradio_multiple_images = gr.Interface(
handle_multiple_files,
[gr.File(type='filepath', file_count='multiple',label='Upload Images')],
[gr.File(label='Download File')],
title='Meta Watermark Remover For Bulk Images',
cache_examples=True
)
return gradio_multiple_images
# Load and process the inpainting model
tester = load_inpainting_model()
image_folder="./temp/images"
if not os.path.exists(image_folder):
os.makedirs(image_folder)
import click
@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
demo1 = ui_1()
demo2 = ui_2()
demo3=ui_3()
demo=gr.TabbedInterface([demo1,demo2,demo3], title="Meta Watermark Remover",tab_names=["Meta Single Image","Meta Bulk Images","Manual Remove"])
demo.queue().launch(debug=debug, share=share)#,server_port=9000)
#Run on local network
# laptop_ip="192.168.0.30"
# port=8080
# demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port)
if __name__ == "__main__":
main()