|
|
|
import torch
|
|
|
|
|
|
def extract_image_patches(images, ksizes, strides, rates, padding="same"):
|
|
"""
|
|
Extract patches from images and put them in the C output dimension.
|
|
:param padding:
|
|
:param images: [batch, channels, in_rows, in_cols]. A 4-D Tensor with shape
|
|
:param ksizes: [ksize_rows, ksize_cols]. The size of the sliding window for
|
|
each dimension of images
|
|
:param strides: [stride_rows, stride_cols]
|
|
:param rates: [dilation_rows, dilation_cols]
|
|
:return: A Tensor
|
|
"""
|
|
assert len(images.size()) == 4
|
|
assert padding in ["same", "valid"]
|
|
batch_size, channel, height, width = images.size()
|
|
|
|
if padding == "same":
|
|
images = same_padding(images, ksizes, strides, rates)
|
|
elif padding == "valid":
|
|
pass
|
|
else:
|
|
raise NotImplementedError(
|
|
'Unsupported padding type: {}.\
|
|
Only "same" or "valid" are supported.'.format(
|
|
padding
|
|
)
|
|
)
|
|
|
|
unfold = torch.nn.Unfold(
|
|
kernel_size=ksizes, dilation=rates, padding=0, stride=strides
|
|
)
|
|
patches = unfold(images)
|
|
return patches
|
|
|
|
|
|
def same_padding(images, ksizes, strides, rates):
|
|
assert len(images.size()) == 4
|
|
batch_size, channel, rows, cols = images.size()
|
|
out_rows = (rows + strides[0] - 1) // strides[0]
|
|
out_cols = (cols + strides[1] - 1) // strides[1]
|
|
effective_k_row = (ksizes[0] - 1) * rates[0] + 1
|
|
effective_k_col = (ksizes[1] - 1) * rates[1] + 1
|
|
padding_rows = max(0, (out_rows - 1) * strides[0] + effective_k_row - rows)
|
|
padding_cols = max(0, (out_cols - 1) * strides[1] + effective_k_col - cols)
|
|
|
|
padding_top = int(padding_rows / 2.0)
|
|
padding_left = int(padding_cols / 2.0)
|
|
padding_bottom = padding_rows - padding_top
|
|
padding_right = padding_cols - padding_left
|
|
paddings = (padding_left, padding_right, padding_top, padding_bottom)
|
|
images = torch.nn.ZeroPad2d(paddings)(images)
|
|
return images
|
|
|
|
|
|
def reduce_mean(x, axis=None, keepdim=False):
|
|
if not axis:
|
|
axis = range(len(x.shape))
|
|
for i in sorted(axis, reverse=True):
|
|
x = torch.mean(x, dim=i, keepdim=keepdim)
|
|
return x
|
|
|
|
|
|
def reduce_std(x, axis=None, keepdim=False):
|
|
if not axis:
|
|
axis = range(len(x.shape))
|
|
for i in sorted(axis, reverse=True):
|
|
x = torch.std(x, dim=i, keepdim=keepdim)
|
|
return x
|
|
|
|
|
|
def reduce_sum(x, axis=None, keepdim=False):
|
|
if not axis:
|
|
axis = range(len(x.shape))
|
|
for i in sorted(axis, reverse=True):
|
|
x = torch.sum(x, dim=i, keepdim=keepdim)
|
|
return x
|
|
|