Upload 4 files
Browse files- app.py +232 -0
- config.py +22 -0
- create_mask.py +84 -0
- inpaint.py +121 -0
app.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import imageio
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from inpaint import InpaintingTester
|
7 |
+
import os
|
8 |
+
import shutil
|
9 |
+
import re
|
10 |
+
import uuid
|
11 |
+
|
12 |
+
def create_mask(watermark, mask_type="white"):
|
13 |
+
"""
|
14 |
+
Create a mask for the watermark region.
|
15 |
+
mask_type: 'white' for white mask and 'black' for black mask
|
16 |
+
"""
|
17 |
+
h, w, _ = watermark.shape
|
18 |
+
if mask_type == "white":
|
19 |
+
return np.ones((h, w), dtype=np.uint8) * 255 # White mask
|
20 |
+
elif mask_type == "black":
|
21 |
+
return np.zeros((h, w), dtype=np.uint8) # Black mask
|
22 |
+
return None
|
23 |
+
|
24 |
+
|
25 |
+
def inpaint_watermark(watermark, mask):
|
26 |
+
"""Inpaint the watermark region using the mask."""
|
27 |
+
return cv2.inpaint(watermark, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
|
28 |
+
|
29 |
+
|
30 |
+
def place_inpainted_back(image, inpainted_region, location):
|
31 |
+
"""Place the inpainted region back into the original image."""
|
32 |
+
x_start, y_start, x_end, y_end = location
|
33 |
+
image[y_start:y_end, x_start:x_end] = inpainted_region
|
34 |
+
return image
|
35 |
+
|
36 |
+
|
37 |
+
def extract_watermark(image, height_ratio=0.15, width_ratio=0.15, margin=0):
|
38 |
+
"""Extract watermark from the image using given ratios and margin."""
|
39 |
+
h, w, _ = image.shape
|
40 |
+
crop_h, crop_w = int(h * height_ratio), int(w * width_ratio)
|
41 |
+
x_start, y_start = w - crop_w, h - crop_h
|
42 |
+
watermark = image[y_start:h-margin, x_start:w-margin]
|
43 |
+
location = (x_start, y_start, w-margin, h-margin)
|
44 |
+
return watermark, location
|
45 |
+
|
46 |
+
|
47 |
+
def load_inpainting_model():
|
48 |
+
"""Load the inpainting model."""
|
49 |
+
save_path = "./output"
|
50 |
+
# resize_to = None # Default size from config
|
51 |
+
resize_to = (480,480)
|
52 |
+
return InpaintingTester(save_path, resize_to)
|
53 |
+
|
54 |
+
|
55 |
+
def process_image_with_model(image_path, mask_path, tester):
|
56 |
+
"""Process the image using the inpainting model and return the cleaned image path."""
|
57 |
+
image_mask_pairs = [(image_path, mask_path)]
|
58 |
+
return tester.process_multiple_images(image_mask_pairs)[0]
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
def img_file_name(image_path):
|
65 |
+
global image_folder
|
66 |
+
text=os.path.basename(image_path)
|
67 |
+
text=text.split(".")[0]
|
68 |
+
# Remove all non-alphabetic characters and convert to lowercase
|
69 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text) # Retain only alphabets and spaces
|
70 |
+
text = text.lower().strip() # Convert to lowercase and strip leading/trailing spaces
|
71 |
+
text = text.replace(" ", "_") # Replace spaces with underscores
|
72 |
+
|
73 |
+
# Truncate or handle empty text
|
74 |
+
truncated_text = text[:25] if len(text) > 25 else text if len(text) > 0 else "empty"
|
75 |
+
|
76 |
+
# Generate a random string for uniqueness
|
77 |
+
random_string = uuid.uuid4().hex[:8].upper()
|
78 |
+
|
79 |
+
# Construct the file name
|
80 |
+
file_name = f"{image_folder}/{truncated_text}_{random_string}.png"
|
81 |
+
return file_name
|
82 |
+
|
83 |
+
def logo_remover(image_path):
|
84 |
+
image = cv2.imread(image_path)
|
85 |
+
image = cv2.resize(image, (1280, 1280)) # Resize image if needed
|
86 |
+
|
87 |
+
# Extract watermark and location
|
88 |
+
first_crop, first_location = extract_watermark(image, 0.50, 0.50, 0)
|
89 |
+
watermark, location = extract_watermark(first_crop, 0.12, 0.26, 27) #height, side, margin
|
90 |
+
|
91 |
+
|
92 |
+
# Create black and white masks
|
93 |
+
mask1 = create_mask(first_crop, "black")
|
94 |
+
mask2 = create_mask(watermark, "white")
|
95 |
+
combined_mask = place_inpainted_back(mask1, mask2, location)
|
96 |
+
|
97 |
+
# Save temporary files
|
98 |
+
input_image = "./input/temp.png"
|
99 |
+
input_mask = "./input/temp_mask.png"
|
100 |
+
# temp_image = cv2.resize(first_crop, (512, 512))
|
101 |
+
temp_image=first_crop
|
102 |
+
cv2.imwrite(input_image, temp_image)
|
103 |
+
# temp_mask = cv2.resize(combined_mask, (512, 512))
|
104 |
+
temp_mask=combined_mask
|
105 |
+
cv2.imwrite(input_mask, temp_mask)
|
106 |
+
|
107 |
+
|
108 |
+
clean_image_path = process_image_with_model(input_image, input_mask, tester)
|
109 |
+
|
110 |
+
# Check if the image was loaded correctly
|
111 |
+
if clean_image_path is None:
|
112 |
+
print(f"Failed to load image: {clean_image_path}")
|
113 |
+
return # Or handle the error accordingly
|
114 |
+
clean_image = cv2.imread(clean_image_path)
|
115 |
+
clean_image = cv2.resize(clean_image, (combined_mask.shape[1], combined_mask.shape[0]))
|
116 |
+
result_image = place_inpainted_back(image, clean_image, first_location)
|
117 |
+
save_path=img_file_name(image_path)
|
118 |
+
cv2.imwrite(save_path, result_image)
|
119 |
+
return save_path
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
# Define a function to handle the image editing and return the final result
|
126 |
+
def process_and_return(im):
|
127 |
+
global tester
|
128 |
+
# Save the composite image (base image) and mask to files
|
129 |
+
base_image_path = "base_image.png"
|
130 |
+
mask_image_path = "mask_image.png"
|
131 |
+
|
132 |
+
# Save the composite image (base image)
|
133 |
+
imageio.imwrite(base_image_path, im["composite"])
|
134 |
+
|
135 |
+
# Extract the alpha channel (mask)
|
136 |
+
alpha_channel = im["layers"][0][:, :, 3]
|
137 |
+
|
138 |
+
# Create the mask: white (255) where drawn, black (0) elsewhere
|
139 |
+
mask = np.zeros_like(alpha_channel, dtype=np.uint8)
|
140 |
+
mask[alpha_channel > 0] = 255 # Set drawn areas to white (255)
|
141 |
+
|
142 |
+
# Save the mask image
|
143 |
+
imageio.imwrite(mask_image_path, mask)
|
144 |
+
# Process the images using the inpainting model
|
145 |
+
final_result = process_image_with_model(base_image_path, mask_image_path,tester)
|
146 |
+
|
147 |
+
# Return the processed image
|
148 |
+
return final_result
|
149 |
+
|
150 |
+
def ui_3():
|
151 |
+
# Create a Gradio app
|
152 |
+
with gr.Blocks() as demo:
|
153 |
+
with gr.Row():
|
154 |
+
# Create an ImageEditor component for uploading and editing the image
|
155 |
+
im = gr.ImageEditor(
|
156 |
+
type="numpy",
|
157 |
+
canvas_size=(1, 1), # Use canvas_size instead of crop_size
|
158 |
+
layers=True, # Allow layers in the editor
|
159 |
+
transforms=["crop"], # Allow cropping
|
160 |
+
format="png", # Save images in PNG format
|
161 |
+
label="Base Image",
|
162 |
+
show_label=True
|
163 |
+
)
|
164 |
+
# Create an Image component to display the processed result
|
165 |
+
im2 = gr.Image(label="Processed Image", show_label=True)
|
166 |
+
|
167 |
+
# Create a Button to trigger the image processing
|
168 |
+
btn = gr.Button("Process Image")
|
169 |
+
|
170 |
+
# Define an event listener to trigger the image processing when the button is clicked
|
171 |
+
btn.click(process_and_return, inputs=im, outputs=im2) # Output processed image
|
172 |
+
return demo
|
173 |
+
# def handle_pil_image(image):
|
174 |
+
|
175 |
+
# logo_remover(image)
|
176 |
+
|
177 |
+
|
178 |
+
def ui_1():
|
179 |
+
test_examples=[["./input/image.jpg"]]
|
180 |
+
gradio_input=[gr.Image(label='Upload an Image',type="filepath")]
|
181 |
+
gradio_Output=[gr.Image(label='Display Image')]
|
182 |
+
gradio_interface = gr.Interface(fn=logo_remover, inputs=gradio_input,outputs=gradio_Output ,
|
183 |
+
title="Meta Watermark Remover For Image",
|
184 |
+
examples=test_examples)
|
185 |
+
return gradio_interface
|
186 |
+
from PIL import Image
|
187 |
+
import zipfile
|
188 |
+
|
189 |
+
def make_zip(image_list):
|
190 |
+
zip_path = f"./temp/images/{uuid.uuid4().hex[:6]}.zip"
|
191 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
192 |
+
for image in image_list:
|
193 |
+
zipf.write(image, os.path.basename(image))
|
194 |
+
return zip_path
|
195 |
+
|
196 |
+
def handle_multiple_files(image_files):
|
197 |
+
image_list = []
|
198 |
+
if len(image_files) == 1:
|
199 |
+
saved_path=logo_remover(image_files[0])
|
200 |
+
return saved_path
|
201 |
+
else:
|
202 |
+
for image_path in image_files:
|
203 |
+
saved_path=logo_remover(image_path)
|
204 |
+
image_list.append(saved_path)
|
205 |
+
zip_path = make_zip(image_list)
|
206 |
+
return zip_path
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
def ui_2():
|
211 |
+
gradio_multiple_images = gr.Interface(
|
212 |
+
handle_multiple_files,
|
213 |
+
[gr.File(type='filepath', file_count='multiple',label='Upload Images')],
|
214 |
+
[gr.File(label='Download File')],
|
215 |
+
title='Meta Watermark Remover For Bulk Images',
|
216 |
+
cache_examples=True
|
217 |
+
)
|
218 |
+
return gradio_multiple_images
|
219 |
+
|
220 |
+
# Load and process the inpainting model
|
221 |
+
tester = load_inpainting_model()
|
222 |
+
image_folder="./temp/images"
|
223 |
+
if not os.path.exists(image_folder):
|
224 |
+
os.makedirs(image_folder)
|
225 |
+
|
226 |
+
# Launch the Gradio app
|
227 |
+
if __name__ == "__main__":
|
228 |
+
demo2 = ui_1()
|
229 |
+
demo3 = ui_2()
|
230 |
+
demo1=ui_3()
|
231 |
+
demo=gr.TabbedInterface([demo1,demo2,demo3], title="Meta Watermark Remover",tab_names=["Manual Remove","Meta Single Image","Meta Bulk Images"])
|
232 |
+
demo.launch(show_error=True)
|
config.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
# GENERIC
|
4 |
+
GPU_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
5 |
+
INIMAGE = "./input/image.jpg"
|
6 |
+
MASKIMAGE = "./input/mask.jpg"
|
7 |
+
OUTIMAGE = "./output/inpainted_img.png"
|
8 |
+
RESIZE_TO = (512, 512)
|
9 |
+
CUDA = True if torch.cuda.is_available() else False
|
10 |
+
|
11 |
+
# DEEPFILLv2
|
12 |
+
DEEPFILL_MODEL_PATH = "./model/deepfillv2_WGAN.pth"
|
13 |
+
GPU_ID = -1
|
14 |
+
INIT_TYPE = "xavier"
|
15 |
+
INIT_GAIN = 0.02
|
16 |
+
PAD_TYPE = "zero"
|
17 |
+
IN_CHANNELS = 4
|
18 |
+
OUT_CHANNELS = 3
|
19 |
+
LATENT_CHANNELS = 48
|
20 |
+
ACTIVATION = "elu"
|
21 |
+
NORM = "in"
|
22 |
+
NUM_WORKERS = 0
|
create_mask.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from config import RESIZE_TO, MASKIMAGE
|
4 |
+
|
5 |
+
# image mask
|
6 |
+
|
7 |
+
# free form mask
|
8 |
+
# bbox mask
|
9 |
+
|
10 |
+
|
11 |
+
def create_ff_mask():
|
12 |
+
config = {
|
13 |
+
"img_shape": list(RESIZE_TO),
|
14 |
+
"mv": 15,
|
15 |
+
"ma": 4.0,
|
16 |
+
"ml": 40,
|
17 |
+
"mbw": 5,
|
18 |
+
}
|
19 |
+
|
20 |
+
h, w = config["img_shape"]
|
21 |
+
mask = np.zeros((h, w))
|
22 |
+
num_v = np.random.randint(config["mv"])
|
23 |
+
|
24 |
+
for i in range(num_v):
|
25 |
+
start_x = np.random.randint(w)
|
26 |
+
start_y = np.random.randint(h)
|
27 |
+
for j in range(1 + np.random.randint(5)):
|
28 |
+
angle = 0.01 + np.random.randint(config["ma"])
|
29 |
+
if i % 2 == 0:
|
30 |
+
angle = 2 * 3.1415926 - angle
|
31 |
+
length = 10 + np.random.randint(config["ml"])
|
32 |
+
brush_w = 5 + np.random.randint(config["mbw"])
|
33 |
+
end_x = (start_x + length * np.sin(angle)).astype(np.int32)
|
34 |
+
end_y = (start_y + length * np.cos(angle)).astype(np.int32)
|
35 |
+
|
36 |
+
cv2.line(mask, (start_y, start_x), (end_y, end_x), 255.0, brush_w)
|
37 |
+
start_x, start_y = end_x, end_y
|
38 |
+
|
39 |
+
mask = mask.astype(np.uint8)
|
40 |
+
cv2.imwrite(MASKIMAGE, mask)
|
41 |
+
|
42 |
+
|
43 |
+
def create_bbox_mask():
|
44 |
+
shape = list(RESIZE_TO)
|
45 |
+
margin = [10, 10]
|
46 |
+
bbox_shape = [30, 30]
|
47 |
+
|
48 |
+
def random_bbox(shape, margin, bbox_shape):
|
49 |
+
"""Generate a random tlhw with configuration.
|
50 |
+
Args:
|
51 |
+
config: Config should have configuration including IMG_SHAPES,
|
52 |
+
VERTICAL_MARGIN, HEIGHT, HORIZONTAL_MARGIN, WIDTH.
|
53 |
+
Returns:
|
54 |
+
tuple: (top, left, height, width)
|
55 |
+
"""
|
56 |
+
img_height, img_width = shape
|
57 |
+
height, width = bbox_shape
|
58 |
+
ver_margin, hor_margin = margin
|
59 |
+
maxt = img_height - ver_margin - height
|
60 |
+
maxl = img_width - hor_margin - width
|
61 |
+
t = np.random.randint(low=ver_margin, high=maxt)
|
62 |
+
l = np.random.randint(low=hor_margin, high=maxl)
|
63 |
+
h = height
|
64 |
+
w = width
|
65 |
+
return (t, l, h, w)
|
66 |
+
|
67 |
+
bboxs = []
|
68 |
+
for i in range(20):
|
69 |
+
bbox = random_bbox(shape, margin, bbox_shape)
|
70 |
+
bboxs.append(bbox)
|
71 |
+
|
72 |
+
height, width = shape
|
73 |
+
mask = np.zeros((height, width), np.float32)
|
74 |
+
# print(mask.shape)
|
75 |
+
for bbox in bboxs:
|
76 |
+
h = int(bbox[2] * 0.1) + np.random.randint(int(bbox[2] * 0.2 + 1))
|
77 |
+
w = int(bbox[3] * 0.1) + np.random.randint(int(bbox[3] * 0.2) + 1)
|
78 |
+
mask[
|
79 |
+
(bbox[0] + h) : (bbox[0] + bbox[2] - h),
|
80 |
+
(bbox[1] + w) : (bbox[1] + bbox[3] - w),
|
81 |
+
] = 255.0
|
82 |
+
|
83 |
+
mask = mask.astype(np.uint8)
|
84 |
+
cv2.imwrite(MASKIMAGE, mask)
|
inpaint.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from types import SimpleNamespace
|
6 |
+
from deepfillv2 import test_dataset, utils
|
7 |
+
from config import *
|
8 |
+
|
9 |
+
class InpaintingTester:
|
10 |
+
def __init__(self, save_path, resize_to=None):
|
11 |
+
if resize_to is None:
|
12 |
+
resize_to = RESIZE_TO
|
13 |
+
self.save_path = save_path
|
14 |
+
self.setsize = resize_to
|
15 |
+
|
16 |
+
# Build the generator network
|
17 |
+
opt = SimpleNamespace(
|
18 |
+
pad_type=PAD_TYPE,
|
19 |
+
in_channels=IN_CHANNELS,
|
20 |
+
out_channels=OUT_CHANNELS,
|
21 |
+
latent_channels=LATENT_CHANNELS,
|
22 |
+
activation=ACTIVATION,
|
23 |
+
norm=NORM,
|
24 |
+
init_type=INIT_TYPE,
|
25 |
+
init_gain=INIT_GAIN,
|
26 |
+
use_cuda=CUDA,
|
27 |
+
gpu_device=GPU_DEVICE,
|
28 |
+
)
|
29 |
+
|
30 |
+
# Initialize generator (only once)
|
31 |
+
self.generator = utils.create_generator(opt).eval()
|
32 |
+
|
33 |
+
# Load pretrained model weights
|
34 |
+
# print("-- INPAINT: Loading Pretrained Model --")
|
35 |
+
self.load_model_generator(self.generator)
|
36 |
+
|
37 |
+
# Move the generator to GPU
|
38 |
+
self.generator = self.generator.to(GPU_DEVICE)
|
39 |
+
|
40 |
+
def load_model_generator(self, generator):
|
41 |
+
pretrained_dict = torch.load(
|
42 |
+
DEEPFILL_MODEL_PATH, map_location=torch.device(GPU_DEVICE), weights_only=True
|
43 |
+
)
|
44 |
+
generator.load_state_dict(pretrained_dict)
|
45 |
+
|
46 |
+
def process_image(self, in_image, mask_image, save_image_path):
|
47 |
+
# Initialize dataset and dataloader
|
48 |
+
trainset = test_dataset.InpaintDataset(in_image, mask_image, self.setsize)
|
49 |
+
dataloader = DataLoader(
|
50 |
+
trainset,
|
51 |
+
batch_size=1,
|
52 |
+
shuffle=False,
|
53 |
+
num_workers=8,
|
54 |
+
pin_memory=True,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Testing loop for a single image
|
58 |
+
for batch_idx, (img, mask) in enumerate(dataloader):
|
59 |
+
img = img.to(GPU_DEVICE)
|
60 |
+
mask = mask.to(GPU_DEVICE)
|
61 |
+
|
62 |
+
# Generator output
|
63 |
+
with torch.no_grad():
|
64 |
+
first_out, second_out = self.generator(img, mask)
|
65 |
+
|
66 |
+
# Combine outputs with input
|
67 |
+
first_out_wholeimg = img * (1 - mask) + first_out * mask
|
68 |
+
second_out_wholeimg = img * (1 - mask) + second_out * mask
|
69 |
+
|
70 |
+
masked_img = img * (1 - mask) + mask
|
71 |
+
mask = torch.cat((mask, mask, mask), 1)
|
72 |
+
img_list = [second_out_wholeimg]
|
73 |
+
name_list = ["second_out"]
|
74 |
+
|
75 |
+
# Save the sample image
|
76 |
+
results_path = os.path.dirname(save_image_path)
|
77 |
+
if not os.path.exists(results_path):
|
78 |
+
os.makedirs(results_path)
|
79 |
+
|
80 |
+
utils.save_sample_png(
|
81 |
+
sample_folder=results_path,
|
82 |
+
sample_name=os.path.basename(save_image_path),
|
83 |
+
img_list=img_list,
|
84 |
+
name_list=name_list,
|
85 |
+
pixel_max_cnt=255,
|
86 |
+
)
|
87 |
+
|
88 |
+
def process_multiple_images(self, image_mask_pairs):
|
89 |
+
# Iterate through a list of image/mask pairs and save results
|
90 |
+
png_images=[]
|
91 |
+
for img_path, mask_path in image_mask_pairs:
|
92 |
+
try:
|
93 |
+
save_image_path = os.path.join(self.save_path, os.path.basename(img_path))
|
94 |
+
print(f"Processing: {img_path} and {mask_path}")
|
95 |
+
self.process_image(img_path, mask_path, save_image_path)
|
96 |
+
extention = os.path.splitext(save_image_path)[1]
|
97 |
+
save_at=save_image_path.replace(extention, ".png")
|
98 |
+
png_images.append(save_at)
|
99 |
+
except Exception as e:
|
100 |
+
if self.save_path in png_images:
|
101 |
+
png_images.pop()
|
102 |
+
png_images.append(None)
|
103 |
+
print(f"Error: {e}")
|
104 |
+
# print("-- All Inpainting is finished --")
|
105 |
+
return png_images
|
106 |
+
|
107 |
+
# Main execution
|
108 |
+
# if __name__ == "__main__":
|
109 |
+
# save_path = "./output"
|
110 |
+
# resize_to = None # Default size from config
|
111 |
+
|
112 |
+
# # List of image and mask pairs
|
113 |
+
# image_mask_pairs = [
|
114 |
+
# ( "./input/image.jpg", "./input/mask.jpg"),
|
115 |
+
# ]
|
116 |
+
|
117 |
+
# tester = InpaintingTester(save_path, resize_to)
|
118 |
+
|
119 |
+
# # Process multiple images using a loop
|
120 |
+
# results=tester.process_multiple_images(image_mask_pairs)
|
121 |
+
# print(results)
|