Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gpu=False
|
2 |
+
import easyocr
|
3 |
+
reader = easyocr.Reader(['ch_sim','en'],gpu=gpu) # this needs to run only once to load the model into memory
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import os
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import shutil
|
10 |
+
from concurrent.futures import ThreadPoolExecutor
|
11 |
+
import re
|
12 |
+
import subprocess
|
13 |
+
|
14 |
+
def extract_frames(video_path, output_folder):
|
15 |
+
if os.path.exists(output_folder):
|
16 |
+
shutil.rmtree(output_folder)
|
17 |
+
os.makedirs(output_folder, exist_ok=True)
|
18 |
+
|
19 |
+
cap = cv2.VideoCapture(video_path)
|
20 |
+
frame_count = 0
|
21 |
+
|
22 |
+
while cap.isOpened():
|
23 |
+
ret, frame = cap.read()
|
24 |
+
if not ret:
|
25 |
+
break # Stop when video ends
|
26 |
+
|
27 |
+
frame_path = os.path.join(output_folder, f"{frame_count:06d}.png")
|
28 |
+
cv2.imwrite(frame_path, frame)
|
29 |
+
frame_count += 1
|
30 |
+
|
31 |
+
cap.release()
|
32 |
+
print(f"Extracted {frame_count} frames to {output_folder}")
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
# Initialize text reader
|
41 |
+
|
42 |
+
def remove_watermark(image, blur_type="strong_gaussian"):
|
43 |
+
results = reader.readtext(image) # Detect text regions
|
44 |
+
|
45 |
+
for (bbox, text, prob) in results:
|
46 |
+
top_left = tuple(map(int, bbox[0]))
|
47 |
+
bottom_right = tuple(map(int, bbox[2]))
|
48 |
+
x1, y1 = top_left
|
49 |
+
x2, y2 = bottom_right
|
50 |
+
roi = image[y1:y2, x1:x2]
|
51 |
+
|
52 |
+
if blur_type == "strong_gaussian":
|
53 |
+
blurred_roi = cv2.GaussianBlur(roi, (25, 25), 50)
|
54 |
+
elif blur_type == "pixelation":
|
55 |
+
h, w = roi.shape[:2]
|
56 |
+
temp = cv2.resize(roi, (8, 8), interpolation=cv2.INTER_LINEAR)
|
57 |
+
blurred_roi = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
|
58 |
+
elif blur_type == "median":
|
59 |
+
blurred_roi = cv2.medianBlur(roi, 21)
|
60 |
+
elif blur_type == "motion":
|
61 |
+
size = 25
|
62 |
+
kernel = np.zeros((size, size))
|
63 |
+
kernel[:, size//2] = 1
|
64 |
+
kernel = kernel / kernel.sum()
|
65 |
+
blurred_roi = cv2.filter2D(roi, -1, kernel)
|
66 |
+
elif blur_type == "bilateral":
|
67 |
+
blurred_roi = cv2.bilateralFilter(roi, d=15, sigmaColor=75, sigmaSpace=75)
|
68 |
+
elif blur_type == "box":
|
69 |
+
blurred_roi = cv2.blur(roi, (25, 25))
|
70 |
+
elif blur_type == "stacked":
|
71 |
+
temp = cv2.GaussianBlur(roi, (15, 15), 25)
|
72 |
+
blurred_roi = cv2.medianBlur(temp, 15)
|
73 |
+
elif blur_type == "adaptive":
|
74 |
+
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
|
75 |
+
_, mask = cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY)
|
76 |
+
blurred = cv2.GaussianBlur(roi, (25, 25), 25)
|
77 |
+
blurred_roi = np.where(mask[..., None] > 0, blurred, roi)
|
78 |
+
else:
|
79 |
+
blurred_roi = cv2.GaussianBlur(roi, (25, 25), 50)
|
80 |
+
|
81 |
+
image[y1:y2, x1:x2] = blurred_roi
|
82 |
+
return image
|
83 |
+
# return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
def process_frame(frame_path, save_path):
|
89 |
+
image = cv2.imread(frame_path)
|
90 |
+
|
91 |
+
if image is None:
|
92 |
+
print(f"Failed to load: {frame_path}") # Debugging step
|
93 |
+
return
|
94 |
+
|
95 |
+
no_watermark_image = remove_watermark(image, blur_type="median")
|
96 |
+
|
97 |
+
output_file = os.path.join(save_path, os.path.basename(frame_path))
|
98 |
+
success = cv2.imwrite(output_file, no_watermark_image)
|
99 |
+
|
100 |
+
if not success:
|
101 |
+
print(f"Failed to save: {output_file}") # Debugging step
|
102 |
+
|
103 |
+
def batch_process(batch_size=100):
|
104 |
+
input_folder = "./frames"
|
105 |
+
output_folder = "./clean"
|
106 |
+
|
107 |
+
if os.path.exists(output_folder):
|
108 |
+
shutil.rmtree(output_folder)
|
109 |
+
os.makedirs(output_folder, exist_ok=True)
|
110 |
+
|
111 |
+
frame_paths = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.endswith((".jpg", ".png"))]
|
112 |
+
|
113 |
+
with ThreadPoolExecutor() as executor:
|
114 |
+
executor.map(process_frame, frame_paths, [output_folder] * len(frame_paths))
|
115 |
+
|
116 |
+
print(f"Processing complete! {len(frame_paths)} frames saved to {output_folder}")
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def get_video_fps(video_path):
|
122 |
+
"""Extract FPS from the original video."""
|
123 |
+
cap = cv2.VideoCapture(video_path)
|
124 |
+
if not cap.isOpened():
|
125 |
+
return None
|
126 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
127 |
+
cap.release()
|
128 |
+
return fps
|
129 |
+
|
130 |
+
def sorted_files(directory):
|
131 |
+
"""Returns a list of sorted .png files based on numeric order."""
|
132 |
+
files = [f for f in os.listdir(directory) if f.endswith(".png")]
|
133 |
+
files.sort(key=lambda f: int(re.search(r'\d+', f).group()) if re.search(r'\d+', f) else float('inf'))
|
134 |
+
return [os.path.join(directory, f) for f in files]
|
135 |
+
|
136 |
+
def create_video_chunks(frame_dir, output_dir, fps, batch_size=100):
|
137 |
+
"""Creates chunked videos from frames in batches."""
|
138 |
+
|
139 |
+
# Remove old "chunks" folder if exists
|
140 |
+
if os.path.exists(output_dir):
|
141 |
+
shutil.rmtree(output_dir)
|
142 |
+
os.makedirs(output_dir, exist_ok=True)
|
143 |
+
|
144 |
+
sorted_images = sorted_files(frame_dir)
|
145 |
+
|
146 |
+
total_chunks = (len(sorted_images) // batch_size) + (1 if len(sorted_images) % batch_size else 0)
|
147 |
+
|
148 |
+
for i in range(total_chunks):
|
149 |
+
chunk_frames = sorted_images[i * batch_size:(i + 1) * batch_size]
|
150 |
+
if not chunk_frames:
|
151 |
+
continue
|
152 |
+
|
153 |
+
chunk_folder = os.path.join(output_dir, f"chunk_{i+1}")
|
154 |
+
os.makedirs(chunk_folder, exist_ok=True)
|
155 |
+
|
156 |
+
# Copy frames to a temp folder
|
157 |
+
for j, frame in enumerate(chunk_frames):
|
158 |
+
frame_dest = os.path.join(chunk_folder, f"{j:05d}.png") # Zero-padded filenames
|
159 |
+
shutil.copy(frame, frame_dest)
|
160 |
+
|
161 |
+
# Generate video from frames
|
162 |
+
chunk_output = os.path.join(output_dir, f"{i+1}.mp4")
|
163 |
+
ffmpeg_cmd = f'ffmpeg -y -framerate {fps} -i "{chunk_folder}/%05d.png" -c:v libx264 -pix_fmt yuv420p "{chunk_output}"'
|
164 |
+
subprocess.run(ffmpeg_cmd, shell=True, check=True)
|
165 |
+
|
166 |
+
# Cleanup temp chunk folder
|
167 |
+
shutil.rmtree(chunk_folder)
|
168 |
+
|
169 |
+
print(f"✅ All {total_chunks} video chunks created in {output_dir}")
|
170 |
+
|
171 |
+
def vido_chunks(video_path):
|
172 |
+
# Extract original FPS
|
173 |
+
fps = get_video_fps(video_path)
|
174 |
+
if fps is None:
|
175 |
+
raise ValueError("Failed to retrieve FPS from video.")
|
176 |
+
|
177 |
+
# Define folders
|
178 |
+
frame_dir = "./clean"
|
179 |
+
output_dir = "./chunks"
|
180 |
+
# Process frames into video chunks
|
181 |
+
create_video_chunks(frame_dir, output_dir, fps, batch_size=100)
|
182 |
+
|
183 |
+
import os
|
184 |
+
import re
|
185 |
+
import uuid
|
186 |
+
|
187 |
+
def sanitize_file(file_path):
|
188 |
+
folder = os.path.dirname(file_path)
|
189 |
+
text, ext = os.path.splitext(os.path.basename(file_path))
|
190 |
+
|
191 |
+
# Keep alphabets, spaces, and underscores only
|
192 |
+
text = re.sub(r'[^a-zA-Z_ ]', '', text)
|
193 |
+
text = text.lower().strip()
|
194 |
+
text = text.replace(" ", "_")
|
195 |
+
|
196 |
+
# Truncate or handle empty text
|
197 |
+
truncated_text = text[:20] if len(text) > 20 else text if len(text) > 0 else "empty"
|
198 |
+
|
199 |
+
# Generate a random string for uniqueness
|
200 |
+
random_string = uuid.uuid4().hex[:8].upper()
|
201 |
+
|
202 |
+
# Construct the new file name
|
203 |
+
# file_name = f"{folder}/{truncated_text}_{random_string}{ext}"
|
204 |
+
file_name = f"{truncated_text}_{random_string}{ext}"
|
205 |
+
return file_name
|
206 |
+
def upload_file(video_path):
|
207 |
+
os.makedirs("./upload",exist_ok=True)
|
208 |
+
new_path=sanitize_file(video_path)
|
209 |
+
new_path=f"./upload/{new_path}"
|
210 |
+
shutil.copy(video_path,new_path)
|
211 |
+
return new_path
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
import os
|
216 |
+
import re
|
217 |
+
import subprocess
|
218 |
+
def sorted_video_files(directory):
|
219 |
+
"""Returns a list of full paths of .mp4 files sorted by the numeric part of the filename."""
|
220 |
+
files = [f for f in os.listdir(directory) if f.endswith(".mp4")]
|
221 |
+
|
222 |
+
# Extract the numeric part using regex and sort
|
223 |
+
files.sort(key=lambda f: int(re.search(r'\d+', f).group()) if re.search(r'\d+', f) else float('inf'))
|
224 |
+
|
225 |
+
# Convert filenames to full paths
|
226 |
+
full_paths = [os.path.join(directory, f) for f in files]
|
227 |
+
|
228 |
+
return full_paths
|
229 |
+
|
230 |
+
def marge_video(gpu=True):
|
231 |
+
os.makedirs("./result/",exist_ok=True)
|
232 |
+
output_path=f"./result/no_water_mark.mp4"
|
233 |
+
video_list=sorted_video_files("./chunks")
|
234 |
+
with open("./join.txt", "w") as f:
|
235 |
+
for video in video_list:
|
236 |
+
f.write(f"file '{video}'\n")
|
237 |
+
if gpu:
|
238 |
+
join_command = f'ffmpeg -hwaccel cuda -f concat -safe 0 -i ./join.txt -c copy "{output_path}" -y'
|
239 |
+
else:
|
240 |
+
join_command = f'ffmpeg -f concat -safe 0 -i ./join.txt -c copy "{output_path}" -y'
|
241 |
+
subprocess.run(join_command, shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
242 |
+
return output_path
|
243 |
+
def recover_audio(upload_path):
|
244 |
+
output_path=f"./result/no_water_mark.mp4"
|
245 |
+
audio_path="./upload/temp.wav"
|
246 |
+
save_path=upload_path.replace(".mp4","_no_watermark.mp4")
|
247 |
+
var=os.system(f"ffmpeg -i {upload_path} -q:a 0 -map a {audio_path} -y")
|
248 |
+
if var==0:
|
249 |
+
var2=os.system(f"ffmpeg -i {output_path} -i {audio_path} -c:v copy -map 0:v:0 -map 1:a:0 -shortest {save_path} -y")
|
250 |
+
if var2==0:
|
251 |
+
return save_path
|
252 |
+
return None
|
253 |
+
def video_watermark_remover(video_path):
|
254 |
+
global gpu
|
255 |
+
upload_path=upload_file(video_path)
|
256 |
+
extract_frames(upload_path, "./frames")
|
257 |
+
video_path = "/content/face.mp4"
|
258 |
+
vido_chunks(upload_path)
|
259 |
+
marge_video(gpu=gpu)
|
260 |
+
save_path=recover_audio(upload_path)
|
261 |
+
return save_path
|
262 |
+
|
263 |
+
|
264 |
+
import gradio as gr
|
265 |
+
def gradio_interface(video_file):
|
266 |
+
return video_watermark_remover(video_file)
|
267 |
+
|
268 |
+
demo = gr.Interface(
|
269 |
+
fn=gradio_interface,
|
270 |
+
inputs=gr.Video(label="Upload Video"),
|
271 |
+
outputs=gr.File(label="Processed Video"),
|
272 |
+
title="Video Watermark Remover",
|
273 |
+
description="Upload a video, and this tool will remove watermarks using blurring techniques."
|
274 |
+
)
|
275 |
+
|
276 |
+
demo.launch()
|