File size: 8,959 Bytes
3ac5300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "machine_shape": "hm"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU",
    "gpuClass": "premium"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# Check GPU's Memory Capacity\n",
        "\n",
        "By running `nvidia-smi` command, you can find out the GPU's memory capacity on the current system. \n",
        "\n",
        "With the standard GPU instance(___T4___) which is free, you can run 7B and 13B models. With the premium GPU instance(___A100 40GB___) which is paid with the compute unit that you own, you can even run 30B model! Choose the instance at the menu `Runtime` -> `Change runtime type` -> `Hardware accelerator (GPU)` -> `GPU class (Standard or Premium)`"
      ],
      "metadata": {
        "id": "xf3pUNyVO3WS"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!nvidia-smi"
      ],
      "metadata": {
        "id": "L2MoM27rfaKK",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "53175950-3269-4296-9425-3652c81ce9b7"
      },
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Wed Mar 22 12:11:41 2023       \n",
            "+-----------------------------------------------------------------------------+\n",
            "| NVIDIA-SMI 525.85.12    Driver Version: 525.85.12    CUDA Version: 12.0     |\n",
            "|-------------------------------+----------------------+----------------------+\n",
            "| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |\n",
            "| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\n",
            "|                               |                      |               MIG M. |\n",
            "|===============================+======================+======================|\n",
            "|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |\n",
            "| N/A   41C    P0    24W /  70W |      0MiB / 15360MiB |      0%      Default |\n",
            "|                               |                      |                  N/A |\n",
            "+-------------------------------+----------------------+----------------------+\n",
            "                                                                               \n",
            "+-----------------------------------------------------------------------------+\n",
            "| Processes:                                                                  |\n",
            "|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |\n",
            "|        ID   ID                                                   Usage      |\n",
            "|=============================================================================|\n",
            "|  No running processes found                                                 |\n",
            "+-----------------------------------------------------------------------------+\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Clone the repository"
      ],
      "metadata": {
        "id": "N0MDD9TuPTfJ"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!git clone https://github.com/deep-diver/Alpaca-LoRA-Serve.git"
      ],
      "metadata": {
        "id": "a_i5DKBNnzAK"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Move into the directory of the cloned repository"
      ],
      "metadata": {
        "id": "HUuzxWGuPYLq"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "%cd Alpaca-LoRA-Serve"
      ],
      "metadata": {
        "id": "wR-M8u7gsQqg",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "eb7b24ba-10e4-46d5-cf8f-852d9fac8170"
      },
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/content/Alpaca-LoRA-Serve\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Install dependencies"
      ],
      "metadata": {
        "id": "XG8oy7BBPdMh"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install -r requirements.txt"
      ],
      "metadata": {
        "id": "moN-15x_ifHE",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "a7ec61ff-28cb-4ac4-a0ca-6a5cba060579"
      },
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "  Building wheel for transformers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for transformers: filename=transformers-4.28.0.dev0-py3-none-any.whl size=6758864 sha256=028619344608e01338ac944ad0d4e6496fe5c743c90a15dd20c2e436e56106a9\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-vqcgstta/wheels/f7/92/8c/752ff3bfcd3439805d8bbf641614da38ef3226e127ebea86ee\n",
            "  Building wheel for peft (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for peft: filename=peft-0.3.0.dev0-py3-none-any.whl size=40669 sha256=bb0afa4164ac44e0a604c781f61767ea3e7255b85b70e2d4cf76a4252119ac27\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-vqcgstta/wheels/2d/60/1b/0edd9dc0f0c489738b1166bc1b0b560ee368f7721f89d06e3a\n",
            "  Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4707 sha256=5f7dae7c29ab50f6251f5c864c70d4e485a4338a98c5cc1ee51523ace2758bf1\n",
            "  Stored in directory: /root/.cache/pip/wheels/91/e2/96/f676aa08bfd789328c6576cd0f1fde4a3d686703bb0c247697\n",
            "Successfully built transformers peft ffmpy\n",
            "Installing collected packages: tokenizers, sentencepiece, rfc3986, pydub, ffmpy, bitsandbytes, xxhash, websockets, uc-micro-py, python-multipart, pycryptodome, orjson, multidict, mdurl, loralib, h11, frozenlist, dill, async-timeout, aiofiles, yarl, uvicorn, starlette, responses, multiprocess, markdown-it-py, linkify-it-py, huggingface-hub, httpcore, aiosignal, accelerate, transformers, mdit-py-plugins, httpx, fastapi, aiohttp, peft, gradio, datasets\n",
            "Successfully installed accelerate-0.17.1 aiofiles-23.1.0 aiohttp-3.8.4 aiosignal-1.3.1 async-timeout-4.0.2 bitsandbytes-0.37.2 datasets-2.10.1 dill-0.3.6 fastapi-0.95.0 ffmpy-0.3.0 frozenlist-1.3.3 gradio-3.20.0 h11-0.14.0 httpcore-0.16.3 httpx-0.23.3 huggingface-hub-0.13.3 linkify-it-py-2.0.0 loralib-0.1.1 markdown-it-py-2.2.0 mdit-py-plugins-0.3.3 mdurl-0.1.2 multidict-6.0.4 multiprocess-0.70.14 orjson-3.8.8 peft-0.3.0.dev0 pycryptodome-3.17 pydub-0.25.1 python-multipart-0.0.6 responses-0.18.0 rfc3986-1.5.0 sentencepiece-0.1.97 starlette-0.26.1 tokenizers-0.13.2 transformers-4.28.0.dev0 uc-micro-py-1.0.1 uvicorn-0.21.1 websockets-10.4 xxhash-3.2.0 yarl-1.8.2\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Run the application"
      ],
      "metadata": {
        "id": "Cr3bQkSePfrG"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "#@title Choose models\n",
        "\n",
        "base_model = 'decapoda-research/llama-13b-hf' #@param [\"decapoda-research/llama-7b-hf\", \"decapoda-research/llama-13b-hf\", \"decapoda-research/llama-30b-hf\"]\n",
        "finetuned_model = 'chansung/alpaca-lora-13b' #@param [\"tloen/alpaca-lora-7b\", \"chansung/alpaca-lora-13b\", \"chansung/koalpaca-lora-13b\", \"chansung/alpaca-lora-30b\"]\n"
      ],
      "metadata": {
        "id": "4Wg0eqnkPnq-"
      },
      "execution_count": 14,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Run the application\n",
        "\n",
        "It will take some time since LLaMA weights are huge. \n",
        "\n",
        "Click the URL appeared in the `Running on public URL:` field from the log. That will bring you to a new browser tab which opens up the running application."
      ],
      "metadata": {
        "id": "b81jhdtcQyOP"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!python app.py --base_url $base_model --ft_ckpt_url $finetuned_model --share yes"
      ],
      "metadata": {
        "id": "y3qpzBw2jMHq"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}