Spaces:
Runtime error
Runtime error
import gradio as gr | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from nltk import word_tokenize | |
from nltk.stem import WordNetLemmatizer | |
from nltk.corpus import stopwords | |
import nltk | |
import json | |
# Download NLTK resources | |
nltk.download('punkt') | |
nltk.download('wordnet') | |
nltk.download('stopwords') | |
def preprocess(sentence): | |
lemmatizer = WordNetLemmatizer() | |
stop_words = set(stopwords.words('english')) | |
tokens = word_tokenize(sentence.lower()) | |
tokens = [lemmatizer.lemmatize(word) for word in tokens if word.isalnum()] | |
tokens = [word for word in tokens if word not in stop_words] | |
return ' '.join(tokens) | |
def find_most_similar(sentence, candidates, threshold=0.15): | |
input_bits = preprocess(sentence) | |
chunks = [preprocess(candidate) for candidate in candidates] | |
vectorizer = TfidfVectorizer() | |
vectors = vectorizer.fit_transform([input_bits] + chunks) | |
similarity_scores = cosine_similarity(vectors[0:1], vectors[1:]).flatten() | |
similar_sentences = [] | |
for i, score in enumerate(similarity_scores): | |
if score >= threshold: | |
similar_sentences.append({"sentence": candidates[i], "f(score)": round(score, 4)}) | |
return similar_sentences | |
def read_sentences_from_file(file_location): | |
with open(file_location, 'r') as file: | |
text = file.read().replace('\n', ' ') | |
sentences = [sentence.strip() for sentence in text.split('.') if sentence.strip()] | |
return sentences | |
def fetch_vectors(file, sentence): | |
file_location = file.name | |
chunks = read_sentences_from_file(file_location) | |
similar_sentences = find_most_similar(sentence, chunks, threshold=0.15) | |
return json.dumps(similar_sentences, indent=4) | |
# Interface | |
file_uploader = gr.File(label="Upload a .txt file") | |
text_input = gr.Textbox(label="Enter a sentence") | |
output_text = gr.Textbox(label="RAG -QA") | |
iface = gr.Interface( | |
fn=fetch_vectors, | |
inputs=[file_uploader, text_input], | |
outputs=output_text, | |
title="Minimal RAG - For QA (Super Fast/Modeless)", | |
description="Upload a text file and enter the question. The threshold is set to 0.15." | |
) | |
iface.launch(debug=True) |