Changes to be committed:
Browse files
app.py
CHANGED
@@ -1,146 +1,112 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
6 |
|
7 |
-
device = "cuda"
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
|
|
|
|
|
|
|
|
31 |
guidance_scale = guidance_scale,
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
num_inference_steps = num_inference_steps,
|
|
|
33 |
width = width,
|
34 |
-
height = height,
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
return image
|
39 |
-
|
40 |
-
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
-
|
46 |
-
css="""
|
47 |
-
#col-container {
|
48 |
-
margin: 0 auto;
|
49 |
-
max-width: 520px;
|
50 |
-
}
|
51 |
-
"""
|
52 |
|
53 |
-
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
with gr.
|
61 |
-
gr.Markdown(f"""
|
62 |
-
# Text-to-Image Gradio Template
|
63 |
-
Currently running on {power_device}.
|
64 |
-
""")
|
65 |
-
|
66 |
with gr.Row():
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
-
outputs = [result]
|
144 |
-
)
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
|
|
|
|
|
|
3 |
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline, AutoencoderKL
|
6 |
|
7 |
+
device = "cuda"
|
8 |
|
9 |
+
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
10 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
11 |
+
refiner_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
base_pipeline = DiffusionPipeline.from_pretrained(
|
14 |
+
base_model_id,
|
15 |
+
torch_dtype = torch.float16,
|
16 |
+
variant = "fp16",
|
17 |
+
use_safetensors = True
|
18 |
+
).to(device)
|
19 |
|
20 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
21 |
+
refiner_id,
|
22 |
+
text_encoder_2 = base_pipeline.text_encoder_2,
|
23 |
+
vae = vae,
|
24 |
+
torch_dtype = torch.float16,
|
25 |
+
variant = "fp16",
|
26 |
+
use_safetensors = True
|
27 |
+
).to(device)
|
28 |
|
29 |
+
|
30 |
+
|
31 |
+
SAMPLER_MAP = {
|
32 |
+
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
33 |
+
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
@spaces.GPU(duration=120)
|
39 |
+
def generate(
|
40 |
+
prompt,
|
41 |
+
negative_prompt,
|
42 |
+
num_inference_steps,
|
43 |
+
denoising_switch,
|
44 |
+
width, height,
|
45 |
+
guidance_scale
|
46 |
+
):
|
47 |
|
48 |
+
base_processed_image = base_pipeline(
|
49 |
prompt = prompt,
|
50 |
+
negative_prompt = negative_prompt,
|
51 |
+
num_inference_steps = num_inference_steps,
|
52 |
+
denoising_end = denoising_switch,
|
53 |
+
width = width,
|
54 |
+
height = height,
|
55 |
guidance_scale = guidance_scale,
|
56 |
+
output_type = "latent"
|
57 |
+
).images
|
58 |
+
|
59 |
+
generated_image = refiner(
|
60 |
+
prompt = prompt,
|
61 |
+
negative_prompt = negative_prompt,
|
62 |
num_inference_steps = num_inference_steps,
|
63 |
+
denoising_start = denoising_switch,
|
64 |
width = width,
|
65 |
+
height = height,
|
66 |
+
guidance_scale = guidance_scale,
|
67 |
+
image = base_processed_image
|
68 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
return generated_image
|
|
|
|
|
|
|
71 |
|
72 |
+
|
73 |
+
def create_ui():
|
74 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
75 |
with gr.Row():
|
76 |
+
base_model = gr.Radio(label="Base model", choices=[base_model_id], value=base_model_id, interactive=False)
|
77 |
+
refiner_model = gr.Radio(label="Refiner model", choices=[refiner_id], value=refiner_id, interactive=False)
|
78 |
+
with gr.Row():
|
79 |
+
prompt = gr.Textbox(lines=3)
|
80 |
+
negative_prompt = gr.Textbox(lines=3)
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column():
|
83 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=30)
|
84 |
+
denoising_switch = gr.Slider(label="Denoising Switch", minimum=0.01, maximum=1, step=0.01, value=0.8)
|
85 |
+
width = gr.Slider(label="Width", minimum=64, maximum=2048, step=16, value=1024)
|
86 |
+
height = gr.Slider(label="Height", minimum=64, maximum=2048, step=16, value=1024)
|
87 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.1, maximum=30, step=0.1, value=7.5)
|
88 |
+
with gr.Column():
|
89 |
+
output_image = gr.Image(interactive=False)
|
90 |
+
generate_button = gr.Button("Run", variant="primary")
|
91 |
+
|
92 |
+
generate_button.click(
|
93 |
+
generate,
|
94 |
+
inputs=[
|
95 |
+
prompt,
|
96 |
+
negative_prompt,
|
97 |
+
num_inference_steps,
|
98 |
+
denoising_switch,
|
99 |
+
width, height,
|
100 |
+
guidance_scale
|
101 |
+
],
|
102 |
+
outputs=[output_image]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
|
105 |
+
return demo
|
106 |
+
|
|
|
|
|
|
|
107 |
|
108 |
+
if __name__ == "__main__":
|
109 |
+
gradio_app = create_ui()
|
110 |
+
gradio_app.launch(
|
111 |
+
share = True
|
112 |
+
)
|