Neurify commited on
Commit
8b42472
·
1 Parent(s): bb8c29d

Changes to be committed:

Browse files
Files changed (1) hide show
  1. app.py +94 -128
app.py CHANGED
@@ -1,146 +1,112 @@
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
 
 
 
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
 
 
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- image = pipe(
29
  prompt = prompt,
30
- negative_prompt = negative_prompt,
 
 
 
 
31
  guidance_scale = guidance_scale,
 
 
 
 
 
 
32
  num_inference_steps = num_inference_steps,
 
33
  width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
 
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
  with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
  )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
 
146
- demo.queue().launch()
 
 
 
 
 
1
+ import spaces
2
  import gradio as gr
 
 
 
3
  import torch
4
+ from PIL import Image
5
+ from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline, AutoencoderKL
6
 
7
+ device = "cuda"
8
 
9
+ base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
10
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
11
+ refiner_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
 
 
 
 
 
12
 
13
+ base_pipeline = DiffusionPipeline.from_pretrained(
14
+ base_model_id,
15
+ torch_dtype = torch.float16,
16
+ variant = "fp16",
17
+ use_safetensors = True
18
+ ).to(device)
19
 
20
+ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
21
+ refiner_id,
22
+ text_encoder_2 = base_pipeline.text_encoder_2,
23
+ vae = vae,
24
+ torch_dtype = torch.float16,
25
+ variant = "fp16",
26
+ use_safetensors = True
27
+ ).to(device)
28
 
29
+
30
+
31
+ SAMPLER_MAP = {
32
+ "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
33
+ "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
34
+ }
35
+
36
+
37
+
38
+ @spaces.GPU(duration=120)
39
+ def generate(
40
+ prompt,
41
+ negative_prompt,
42
+ num_inference_steps,
43
+ denoising_switch,
44
+ width, height,
45
+ guidance_scale
46
+ ):
47
 
48
+ base_processed_image = base_pipeline(
49
  prompt = prompt,
50
+ negative_prompt = negative_prompt,
51
+ num_inference_steps = num_inference_steps,
52
+ denoising_end = denoising_switch,
53
+ width = width,
54
+ height = height,
55
  guidance_scale = guidance_scale,
56
+ output_type = "latent"
57
+ ).images
58
+
59
+ generated_image = refiner(
60
+ prompt = prompt,
61
+ negative_prompt = negative_prompt,
62
  num_inference_steps = num_inference_steps,
63
+ denoising_start = denoising_switch,
64
  width = width,
65
+ height = height,
66
+ guidance_scale = guidance_scale,
67
+ image = base_processed_image
68
+ ).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
+ return generated_image
 
 
 
71
 
72
+
73
+ def create_ui():
74
+ with gr.Blocks() as demo:
 
 
 
 
 
75
  with gr.Row():
76
+ base_model = gr.Radio(label="Base model", choices=[base_model_id], value=base_model_id, interactive=False)
77
+ refiner_model = gr.Radio(label="Refiner model", choices=[refiner_id], value=refiner_id, interactive=False)
78
+ with gr.Row():
79
+ prompt = gr.Textbox(lines=3)
80
+ negative_prompt = gr.Textbox(lines=3)
81
+ with gr.Row():
82
+ with gr.Column():
83
+ num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=30)
84
+ denoising_switch = gr.Slider(label="Denoising Switch", minimum=0.01, maximum=1, step=0.01, value=0.8)
85
+ width = gr.Slider(label="Width", minimum=64, maximum=2048, step=16, value=1024)
86
+ height = gr.Slider(label="Height", minimum=64, maximum=2048, step=16, value=1024)
87
+ guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.1, maximum=30, step=0.1, value=7.5)
88
+ with gr.Column():
89
+ output_image = gr.Image(interactive=False)
90
+ generate_button = gr.Button("Run", variant="primary")
91
+
92
+ generate_button.click(
93
+ generate,
94
+ inputs=[
95
+ prompt,
96
+ negative_prompt,
97
+ num_inference_steps,
98
+ denoising_switch,
99
+ width, height,
100
+ guidance_scale
101
+ ],
102
+ outputs=[output_image]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  )
104
 
105
+ return demo
106
+
 
 
 
107
 
108
+ if __name__ == "__main__":
109
+ gradio_app = create_ui()
110
+ gradio_app.launch(
111
+ share = True
112
+ )