import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import os import re import emoji TOKEN = os.getenv("HF_TOKEN") models = { "ruSpamNS_v13": "NeuroSpaceX/ruSpamNS_v13", "ruSpamNS_big": "NeuroSpaceX/ruSpamNS_big", "ruSpamNS_small": "NeuroSpaceX/ruSpamNS_small", "ruSpamNS_v14": "NeuroSpaceX/ruSpamNS_v14", "ruSpamNS_v14_multiclass": "NeuroSpaceX/ruSpamNS_v14_multiclass", "ruSpamNS_v16_multiclass": "NeuroSpaceX/ruSpamNS_v16_multiclass", "ruSpamNS_v17_multiclass": "NeuroSpaceX/ruSpamNS_v17_multiclass", "ruSpamNS_v19_multiclass": "NeuroSpaceX/ruSpamNS_v19_multiclass" } tokenizers = {name: AutoTokenizer.from_pretrained(path, use_auth_token=TOKEN) for name, path in models.items()} models = {name: AutoModelForSequenceClassification.from_pretrained(path, use_auth_token=TOKEN).to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')) for name, path in models.items()} device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def clean_text(text): text = emoji.replace_emoji(text, replace='') text = re.sub(r'[^a-zA-Zа-яА-ЯёЁ ]', '', text, flags=re.UNICODE) text = text.lower() text = text.capitalize() text = re.sub(r'\s+', ' ', text).strip() return text def classify_text(text, model_choice): tokenizer = tokenizers[model_choice] model = models[model_choice] message = clean_text(text) encoding = tokenizer(message, padding='max_length', truncation=True, max_length=128, return_tensors='pt') input_ids = encoding['input_ids'].to(device) attention_mask = encoding['attention_mask'].to(device) with torch.no_grad(): outputs = model(input_ids, attention_mask=attention_mask).logits if "multiclass" in model_choice: probabilities = torch.softmax(outputs, dim=1).cpu().numpy()[0] if model_choice == "ruSpamNS_v19_multiclass": labels = ["НЕ СПАМ", "СПАМ", "НЕДВИЖИМОСТЬ/ТОВАРЫ", "ВАКАНСИИ", "РЕКЛАМА/УСЛУГИ"] else: labels = ["НЕ СПАМ", "СПАМ", "НЕДВИЖИМОСТЬ", "ВАКАНСИИ", "ПРОДАЖА"] predicted_index = probabilities.argmax() predicted_label = labels[predicted_index] confidence = probabilities[predicted_index] * 100 return f"{predicted_label} (вероятность: {confidence:.2f}%)" else: prediction = torch.sigmoid(outputs).cpu().numpy()[0][0] label = "СПАМ" if prediction >= 0.5 else "НЕ СПАМ" return f"{label} (вероятность: {prediction*100:.2f}%)" iface = gr.Interface( fn=classify_text, inputs=[ gr.Textbox(lines=3, placeholder="Введите текст..."), gr.Radio(list(models.keys()), label="Выберите модель") ], outputs="text", title="ruSpamNS - Проверка на спам", description="Введите текст, чтобы проверить, является ли он спамом." ) iface.launch()