File size: 15,256 Bytes
f34f7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e4e4f
 
 
 
f34f7ed
 
b7e4e4f
f34f7ed
b7e4e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533ee2
b7e4e4f
f34f7ed
b7e4e4f
 
 
 
3533ee2
b7e4e4f
 
 
f34f7ed
 
 
b7e4e4f
f34f7ed
b7e4e4f
f34f7ed
 
 
 
 
 
 
b7e4e4f
 
 
 
 
 
 
 
 
 
f34f7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# import gradio as gr
# import torch
# import torch.nn as nn
# from joblib import load

# # Define the same neural network model
# class ImprovedSongRecommender(nn.Module):
#     def __init__(self, input_size, num_titles):
#         super(ImprovedSongRecommender, self).__init__()
#         self.fc1 = nn.Linear(input_size, 128)
#         self.bn1 = nn.BatchNorm1d(128)
#         self.fc2 = nn.Linear(128, 256)
#         self.bn2 = nn.BatchNorm1d(256)
#         self.fc3 = nn.Linear(256, 128)
#         self.bn3 = nn.BatchNorm1d(128)
#         self.output = nn.Linear(128, num_titles)
#         self.dropout = nn.Dropout(0.5)

#     def forward(self, x):
#         x = torch.relu(self.bn1(self.fc1(x)))
#         x = self.dropout(x)
#         x = torch.relu(self.bn2(self.fc2(x)))
#         x = self.dropout(x)
#         x = torch.relu(self.bn3(self.fc3(x)))
#         x = self.dropout(x)
#         x = self.output(x)
#         return x

# # Load the trained model
# model_path = "models/improved_model.pth"
# num_unique_titles = 4855  

# model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)  
# model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
# model.eval()

# # Load the label encoders and scaler
# label_encoders_path = "data/new_label_encoders.joblib"
# scaler_path = "data/new_scaler.joblib"

# label_encoders = load(label_encoders_path)
# scaler = load(scaler_path)

# # Create a mapping from encoded indices to actual song titles
# index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}

# def encode_input(tags, artist_name):
#     tags = tags.strip().replace('\n', '')
#     artist_name = artist_name.strip().replace('\n', '')

#     try:
#         encoded_tags = label_encoders['tags'].transform([tags])[0]
#     except ValueError:
#         encoded_tags = label_encoders['tags'].transform(['unknown'])[0]

#     if artist_name:
#         try:
#             encoded_artist = label_encoders['artist_name'].transform([artist_name])[0]
#         except ValueError:
#             encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
#     else:
#         encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]

#     return [encoded_tags, encoded_artist]

# def recommend_songs(tags, artist_name):
#     encoded_input = encode_input(tags, artist_name)
#     input_tensor = torch.tensor([encoded_input]).float()
    
#     with torch.no_grad():
#         output = model(input_tensor)
    
#     recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
#     recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]
    
#     formatted_output = [f"Recommendation {i+1}: {rec}" for i, rec in enumerate(recommendations)]
#     return formatted_output

# # Set up the Gradio interface
# interface = gr.Interface(
#     fn=recommend_songs,
#     inputs=[gr.Textbox(lines=1, placeholder="Enter Tags (e.g., rock)"), gr.Textbox(lines=1, placeholder="Enter Artist Name (optional)")],
#     outputs=gr.Textbox(label="Recommendations"),
#     title="Music Recommendation System",
#     description="Enter tags and (optionally) artist name to get music recommendations."
# )

# interface.launch()

# import gradio as gr
# import torch
# import torch.nn as nn
# from joblib import load
# import numpy as np
# import json

# class ImprovedSongRecommender(nn.Module):
#     def __init__(self, input_size, num_titles):
#         super(ImprovedSongRecommender, self).__init__()
#         self.fc1 = nn.Linear(input_size, 128)
#         self.bn1 = nn.BatchNorm1d(128)
#         self.fc2 = nn.Linear(128, 256)
#         self.bn2 = nn.BatchNorm1d(256)
#         self.fc3 = nn.Linear(256, 128)
#         self.bn3 = nn.BatchNorm1d(128)
#         self.output = nn.Linear(128, num_titles)
#         self.dropout = nn.Dropout(0.5)

#     def forward(self, x):
#         x = torch.relu(self.bn1(self.fc1(x)))
#         x = self.dropout(x)
#         x = torch.relu(self.bn2(self.fc2(x)))
#         x = self.dropout(x)
#         x = torch.relu(self.bn3(self.fc3(x)))
#         x = self.dropout(x)
#         x = self.output(x)
#         return x

# # Load the trained model
# model_path = "models/improved_model.pth"
# num_unique_titles = 4855  
# model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
# model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
# model.eval()

# # Load the label encoders and scaler
# label_encoders_path = "data/new_label_encoders.joblib"
# scaler_path = "data/new_scaler.joblib"
# label_encoders = load(label_encoders_path)
# scaler = load(scaler_path)

# index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}

# def encode_input(tags, artist_name):
#     tags_list = [tag.strip() for tag in tags.split(',')]
#     encoded_tags_list = []
#     for tag in tags_list:
#         try:
#             encoded_tags_list.append(label_encoders['tags'].transform([tag])[0])
#         except ValueError:
#             encoded_tags_list.append(label_encoders['tags'].transform(['unknown'])[0])
    
#     encoded_tags = np.mean(encoded_tags_list).astype(int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
    
#     try:
#         encoded_artist = label_encoders['artist_name'].transform([artist_name])[0] if artist_name else label_encoders['artist_name'].transform(['unknown'])[0]
#     except ValueError:
#         encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]

#     return [encoded_tags, encoded_artist]

# def recommend_songs(tags, artist_name):
#     encoded_input = encode_input(tags, artist_name)
#     input_tensor = torch.tensor([encoded_input]).float()
#     with torch.no_grad():
#         output = model(input_tensor)
#     recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
#     recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]

#     feedback_html = []
#     for idx, rec in enumerate(recommendations):
#         feedback_html.append(f"{rec} <button onclick='gr.Interface.update(\"record_feedback\", {{\"recommendation\": \"{rec}\", \"feedback\": \"up\"}})'>πŸ‘</button> <button onclick='gr.Interface.update(\"record_feedback\", {{\"recommendation\": \"{rec}\", \"feedback\": \"down\"}})'>πŸ‘Ž</button>")
#     return "<br>".join(feedback_html)

# def record_feedback(recommendation, feedback):
    
#     with open("feedback_data.csv", "a") as file:
#         file.write(f"{recommendation},{feedback}\n")
#     return f"Feedback recorded for {recommendation}: {feedback}"

# interface = gr.Interface(
#     fn=recommend_songs,
#     inputs=[
#         gr.Textbox(lines=2, placeholder="Enter Tags (e.g., rock, jazz)"),
#         gr.Textbox(lines=2, placeholder="Enter Artist Name (optional)")
#     ],
#     outputs=gr.HTML(label="Recommendations"),
#     title="Music Recommendation System",
#     description="Enter tags and (optionally) artist name to get music recommendations. Click on thumbs up/down to provide feedback on each song.",
#     allow_flagging="never"
# )

# interface.launch()


# import gradio as gr
# import torch
# import torch.nn as nn
# from joblib import load
# import numpy as np
# import os

# class ImprovedSongRecommender(nn.Module):
#     def __init__(self, input_size, num_titles):
#         super(ImprovedSongRecommender, self).__init__()
#         self.fc1 = nn.Linear(input_size, 128)
#         self.bn1 = nn.BatchNorm1d(128)
#         self.fc2 = nn.Linear(128, 256)
#         self.bn2 = nn.BatchNorm1d(256)
#         self.fc3 = nn.Linear(256, 128)
#         self.bn3 = nn.BatchNorm1d(128)
#         self.output = nn.Linear(128, num_titles)
#         self.dropout = nn.Dropout(0.5)

#     def forward(self, x):
#         x = torch.relu(self.bn1(self.fc1(x)))
#         x = self.dropout(x)
#         x = torch.relu(self.bn2(self.fc2(x)))
#         x = self.dropout(x)
#         x = torch.relu(self.bn3(self.fc3(x)))
#         x = self.dropout(x)
#         x = self.output(x)
#         return x

# # Load the trained model
# model_path = "models/improved_model.pth"
# num_unique_titles = 4855  
# model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
# model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
# model.eval()

# # Load the label encoders and scaler
# label_encoders_path = "data/new_label_encoders.joblib"
# scaler_path = "data/new_scaler.joblib"
# label_encoders = load(label_encoders_path)
# scaler = load(scaler_path)

# index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}

# def encode_input(tags, artist_name):
#     tags_list = [tag.strip() for tag in tags.split(',')]
#     encoded_tags_list = []
#     for tag in tags_list:
#         try:
#             encoded_tags_list.append(label_encoders['tags'].transform([tag])[0])
#         except ValueError:
#             encoded_tags_list.append(label_encoders['tags'].transform(['unknown'])[0])
    
#     encoded_tags = np.mean(encoded_tags_list).astype(int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
    
#     try:
#         encoded_artist = label_encoders['artist_name'].transform([artist_name])[0] if artist_name else label_encoders['artist_name'].transform(['unknown'])[0]
#     except ValueError:
#         encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]

#     return [encoded_tags, encoded_artist]

# def recommend_songs(tags, artist_name):
#     encoded_input = encode_input(tags, artist_name)
#     input_tensor = torch.tensor([encoded_input]).float()
#     with torch.no_grad():
#         output = model(input_tensor)
#     recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
#     recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]

#     feedback_html = []
#     for idx, rec in enumerate(recommendations):
#         feedback_html.append(f"{rec} <button onclick='record_feedback(\"{rec}\", \"up\")'>πŸ‘</button> <button onclick='record_feedback(\"{rec}\", \"down\")'>πŸ‘Ž</button>")
#     return "<br>".join(feedback_html)

# def record_feedback(recommendation, feedback):
#     print(f"Recording feedback for: {recommendation}, Feedback: {feedback}")  # Debugging statement
#     with open("feedback_data.csv", "a") as file:
#         file.write(f"{recommendation},{feedback}\n")
#     print("Feedback recorded successfully.")
#     return f"Feedback recorded for {recommendation}: {feedback}"

# interface = gr.Interface(
#     fn=recommend_songs,
#     inputs=[
#         gr.Textbox(lines=2, placeholder="Enter Tags (e.g., rock, jazz)"),
#         gr.Textbox(lines=2, placeholder="Enter Artist Name (optional)")
#     ],
#     outputs=gr.HTML(label="Recommendations"),
#     title="Music Recommendation System",
#     description="Enter tags and (optionally) artist name to get music recommendations. Click on thumbs up/down to provide feedback on each song.",
#     allow_flagging="never",
#     live=True
# )

# interface.launch()

import gradio as gr
import torch
import torch.nn as nn
from joblib import load
import numpy as np
import os

# Define the neural network model
class ImprovedSongRecommender(nn.Module):
    def __init__(self, input_size, num_titles):
        super(ImprovedSongRecommender, self).__init__()
        self.fc1 = nn.Linear(input_size, 128)
        self.bn1 = nn.BatchNorm1d(128)
        self.fc2 = nn.Linear(128, 256)
        self.bn2 = nn.BatchNorm1d(256)
        self.fc3 = nn.Linear(256, 128)
        self.bn3 = nn.BatchNorm1d(128)
        self.output = nn.Linear(128, num_titles)
        self.dropout = nn.Dropout(0.5)

    def forward(self, x):
        x = torch.relu(self.bn1(self.fc1(x)))
        x = self.dropout(x)
        x = torch.relu(self.bn2(self.fc2(x)))
        x = self.dropout(x)
        x = torch.relu(self.bn3(self.fc3(x)))
        x = self.dropout(x)
        x = self.output(x)
        return x

# Load the trained model
model_path = "models/improved_model.pth"
num_unique_titles = 4855  
model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()

# Load the label encoders and scaler
label_encoders_path = "data/new_label_encoders.joblib"
label_encoders = load(label_encoders_path)

def encode_input(tags, artist_name):
    tags_list = [tag.strip() for tag in tags.split(',')]
    encoded_tags_list = []
    for tag in tags_list:
        try:
            encoded_tags_list.append(label_encoders['tags'].transform([tag])[0])
        except ValueError:
            encoded_tags_list.append(label_encoders['tags'].transform(['unknown'])[0])
    
    encoded_tags = np.mean(encoded_tags_list).astype(int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
    
    try:
        encoded_artist = label_encoders['artist_name'].transform([artist_name])[0]
    except ValueError:
        encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]

    return [encoded_tags, encoded_artist]

def recommend_songs(tags, artist_name):
    encoded_input = encode_input(tags, artist_name)
    input_tensor = torch.tensor([encoded_input]).float()
    with torch.no_grad():
        output = model(input_tensor)
    recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
    recommendations = [label_encoders['title'].inverse_transform([idx])[0] for idx in recommendations_indices]
    print("Recommendations:", recommendations)  # Debugging statement
    return recommendations

def record_feedback(recommendation, feedback):
    feedback_path = "feedback_data.csv"
    if not os.path.exists(feedback_path):
        with open(feedback_path, 'w') as f:
            f.write("Recommendation,Feedback\n")
    with open(feedback_path, 'a') as f:
        f.write(f"{recommendation},{feedback}\n")
    return "Feedback recorded!"

app = gr.Blocks()

with app:
    gr.Markdown("## Music Recommendation System")
    tags_input = gr.Textbox(label="Enter Tags (e.g., rock, jazz, pop)", placeholder="rock, pop")
    artist_name_input = gr.Textbox(label="Enter Artist Name (optional)", placeholder="The Beatles")
    submit_button = gr.Button("Get Recommendations")
    recommendations_output = gr.HTML(label="Recommendations")
    feedback_input = gr.Radio(choices=["Thumbs Up", "Thumbs Down"], label="Feedback")
    feedback_button = gr.Button("Submit Feedback")
    feedback_result = gr.Label(label="Feedback Result")

    def display_recommendations(tags, artist_name):
        recommendations = recommend_songs(tags, artist_name)
        if recommendations:
            return recommendations
        else:
            return ["No recommendations found"]

    submit_button.click(
        fn=display_recommendations,
        inputs=[tags_input, artist_name_input],
        outputs=recommendations_output
    )

    feedback_button.click(
        fn=record_feedback,
        inputs=[recommendations_output, feedback_input],
        outputs=feedback_result
    )

app.launch()