Spaces:
Runtime error
Runtime error
File size: 5,369 Bytes
b7e4e4f f34f7ed 749c535 b7e4e4f f34f7ed 749c535 b7e4e4f 749c535 b7e4e4f 3533ee2 749c535 f34f7ed b7e4e4f 749c535 3533ee2 b7e4e4f 749c535 b7e4e4f f34f7ed b7e4e4f 749c535 b7e4e4f 749c535 f34f7ed 749c535 f34f7ed 749c535 b7e4e4f 749c535 b7e4e4f 749c535 f34f7ed 749c535 dc5fe07 749c535 f34f7ed d6155b9 f34f7ed 749c535 f34f7ed 749c535 f34f7ed 749c535 f34f7ed 749c535 9d7da71 f34f7ed 749c535 9d7da71 d6155b9 749c535 dc5fe07 9d7da71 d6155b9 749c535 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import torch
import torch.nn as nn
from joblib import load
import numpy as np
import pandas as pd
# Define the neural network model
class ImprovedSongRecommender(nn.Module):
def __init__(self, input_size, num_titles):
super(ImprovedSongRecommender, self).__init__()
self.fc1 = nn.Linear(input_size, 128)
self.bn1 = nn.BatchNorm1d(128)
self.fc2 = nn.Linear(128, 256)
self.bn2 = nn.BatchNorm1d(256)
self.fc3 = nn.Linear(256, 128)
self.bn3 = nn.BatchNorm1d(128)
self.output = nn.Linear(128, num_titles)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = torch.relu(self.bn1(self.fc1(x)))
x = self.dropout(x)
x = torch.relu(self.bn2(self.fc2(x)))
x = self.dropout(x)
x = torch.relu(self.bn3(self.fc3(x)))
x = self.dropout(x)
x = self.output(x)
return x
# Load the trained model
model_path = "models/improved_model.pth"
num_unique_titles = 4855
model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
# Load the label encoders
label_encoders_path = "data/new_label_encoders.joblib"
label_encoders = load(label_encoders_path)
def encode_input(tags, artist_name):
tags_list = [tag.strip() for tag in tags.split(',')]
encoded_tags_list = []
for tag in tags_list:
try:
encoded_tags_list.append(
label_encoders['tags'].transform([tag])[0])
except ValueError:
encoded_tags_list.append(
label_encoders['tags'].transform(['unknown'])[0])
encoded_tags = np.mean(encoded_tags_list).astype(
int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
try:
encoded_artist = label_encoders['artist_name'].transform([artist_name])[
0]
except ValueError:
encoded_artist = label_encoders['artist_name'].transform(['unknown'])[
0]
return [encoded_tags, encoded_artist]
def recommend_songs(tags, artist_name):
encoded_input = encode_input(tags, artist_name)
input_tensor = torch.tensor([encoded_input]).float()
with torch.no_grad():
output = model(input_tensor)
recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
recommendations = [label_encoders['title'].inverse_transform(
[idx])[0] for idx in recommendations_indices]
return recommendations
def record_feedback(tags, recommendations, feedbacks):
# Load existing feedback if it exists
try:
feedback_df = pd.read_csv("feedback_data/feedback_data.csv")
except FileNotFoundError:
feedback_df = pd.DataFrame(
columns=["Tags", "Recommendation", "Feedback"])
# Create new feedback entries
new_feedbacks = pd.DataFrame({
"Tags": [tags] * len(recommendations),
"Recommendation": recommendations,
"Feedback": feedbacks
})
# Only keep rows where both a song recommendation and a rating are present
new_feedbacks = new_feedbacks[new_feedbacks["Recommendation"]
!= "No recommendations found"]
new_feedbacks = new_feedbacks[new_feedbacks["Feedback"].notna()]
# Append new feedback to the existing dataframe
feedback_df = pd.concat([feedback_df, new_feedbacks], ignore_index=True)
# Save the updated dataframe to CSV
feedback_df.to_csv("feedback_data/feedback_data.csv", index=False)
return "Feedback recorded!"
app = gr.Blocks()
with app:
gr.Markdown("## Music Recommendation System")
tags_input = gr.Textbox(
label="Enter Tags (e.g., rock, jazz, pop)", placeholder="rock, pop")
submit_button = gr.Button("Get Recommendations")
recommendation_outputs = [
gr.HTML(label=f"Recommendation {i+1}") for i in range(5)]
feedback_inputs = [gr.Radio(
choices=["Thumbs Up", "Thumbs Down"], label=f"Feedback {i+1}") for i in range(5)]
feedback_submit_button = gr.Button("Submit Feedback")
song_recommendations = []
def display_recommendations(tags):
global song_recommendations
song_recommendations = recommend_songs(tags, "")
updated_recommendations = [
gr.update(value=song) for song in song_recommendations]
updated_feedbacks = [gr.update(label=song)
for song in song_recommendations]
return updated_recommendations + updated_feedbacks
submit_button.click(
fn=display_recommendations,
inputs=[tags_input],
outputs=recommendation_outputs + feedback_inputs
)
def collect_feedback(tags, *feedbacks):
global song_recommendations
feedbacks = list(feedbacks)
record_feedback(tags, song_recommendations, feedbacks)
return "Feedback submitted successfully!"
feedback_confirmation = gr.Markdown("")
feedback_submit_button.click(
fn=collect_feedback,
inputs=[tags_input] + feedback_inputs,
outputs=feedback_confirmation
)
for i in range(5):
with gr.Row():
gr.Column([recommendation_outputs[i], feedback_inputs[i]])
with gr.Row():
gr.Column([feedback_submit_button, feedback_confirmation])
app.launch()
|