File size: 5,369 Bytes
b7e4e4f
 
 
 
f34f7ed
749c535
b7e4e4f
f34f7ed
749c535
 
b7e4e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749c535
b7e4e4f
3533ee2
749c535
f34f7ed
b7e4e4f
 
 
749c535
3533ee2
b7e4e4f
 
749c535
b7e4e4f
f34f7ed
 
 
b7e4e4f
749c535
 
b7e4e4f
749c535
 
 
 
 
 
f34f7ed
749c535
 
f34f7ed
749c535
 
b7e4e4f
 
 
749c535
b7e4e4f
 
 
 
 
 
749c535
 
f34f7ed
 
749c535
 
 
dc5fe07
749c535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f34f7ed
 
d6155b9
f34f7ed
 
 
 
749c535
 
f34f7ed
749c535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f34f7ed
 
 
749c535
 
f34f7ed
 
749c535
 
 
9d7da71
 
 
 
f34f7ed
749c535
 
 
9d7da71
d6155b9
 
749c535
 
 
dc5fe07
9d7da71
 
d6155b9
749c535
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import torch
import torch.nn as nn
from joblib import load
import numpy as np
import pandas as pd

# Define the neural network model


class ImprovedSongRecommender(nn.Module):
    def __init__(self, input_size, num_titles):
        super(ImprovedSongRecommender, self).__init__()
        self.fc1 = nn.Linear(input_size, 128)
        self.bn1 = nn.BatchNorm1d(128)
        self.fc2 = nn.Linear(128, 256)
        self.bn2 = nn.BatchNorm1d(256)
        self.fc3 = nn.Linear(256, 128)
        self.bn3 = nn.BatchNorm1d(128)
        self.output = nn.Linear(128, num_titles)
        self.dropout = nn.Dropout(0.5)

    def forward(self, x):
        x = torch.relu(self.bn1(self.fc1(x)))
        x = self.dropout(x)
        x = torch.relu(self.bn2(self.fc2(x)))
        x = self.dropout(x)
        x = torch.relu(self.bn3(self.fc3(x)))
        x = self.dropout(x)
        x = self.output(x)
        return x


# Load the trained model
model_path = "models/improved_model.pth"
num_unique_titles = 4855
model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()

# Load the label encoders
label_encoders_path = "data/new_label_encoders.joblib"
label_encoders = load(label_encoders_path)


def encode_input(tags, artist_name):
    tags_list = [tag.strip() for tag in tags.split(',')]
    encoded_tags_list = []
    for tag in tags_list:
        try:
            encoded_tags_list.append(
                label_encoders['tags'].transform([tag])[0])
        except ValueError:
            encoded_tags_list.append(
                label_encoders['tags'].transform(['unknown'])[0])

    encoded_tags = np.mean(encoded_tags_list).astype(
        int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]

    try:
        encoded_artist = label_encoders['artist_name'].transform([artist_name])[
            0]
    except ValueError:
        encoded_artist = label_encoders['artist_name'].transform(['unknown'])[
            0]

    return [encoded_tags, encoded_artist]


def recommend_songs(tags, artist_name):
    encoded_input = encode_input(tags, artist_name)
    input_tensor = torch.tensor([encoded_input]).float()
    with torch.no_grad():
        output = model(input_tensor)
    recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
    recommendations = [label_encoders['title'].inverse_transform(
        [idx])[0] for idx in recommendations_indices]
    return recommendations


def record_feedback(tags, recommendations, feedbacks):
    # Load existing feedback if it exists
    try:
        feedback_df = pd.read_csv("feedback_data/feedback_data.csv")
    except FileNotFoundError:
        feedback_df = pd.DataFrame(
            columns=["Tags", "Recommendation", "Feedback"])

    # Create new feedback entries
    new_feedbacks = pd.DataFrame({
        "Tags": [tags] * len(recommendations),
        "Recommendation": recommendations,
        "Feedback": feedbacks
    })

    # Only keep rows where both a song recommendation and a rating are present
    new_feedbacks = new_feedbacks[new_feedbacks["Recommendation"]
                                  != "No recommendations found"]
    new_feedbacks = new_feedbacks[new_feedbacks["Feedback"].notna()]

    # Append new feedback to the existing dataframe
    feedback_df = pd.concat([feedback_df, new_feedbacks], ignore_index=True)

    # Save the updated dataframe to CSV
    feedback_df.to_csv("feedback_data/feedback_data.csv", index=False)

    return "Feedback recorded!"


app = gr.Blocks()

with app:
    gr.Markdown("## Music Recommendation System")
    tags_input = gr.Textbox(
        label="Enter Tags (e.g., rock, jazz, pop)", placeholder="rock, pop")
    submit_button = gr.Button("Get Recommendations")

    recommendation_outputs = [
        gr.HTML(label=f"Recommendation {i+1}") for i in range(5)]
    feedback_inputs = [gr.Radio(
        choices=["Thumbs Up", "Thumbs Down"], label=f"Feedback {i+1}") for i in range(5)]

    feedback_submit_button = gr.Button("Submit Feedback")

    song_recommendations = []

    def display_recommendations(tags):
        global song_recommendations
        song_recommendations = recommend_songs(tags, "")
        updated_recommendations = [
            gr.update(value=song) for song in song_recommendations]
        updated_feedbacks = [gr.update(label=song)
                             for song in song_recommendations]
        return updated_recommendations + updated_feedbacks

    submit_button.click(
        fn=display_recommendations,
        inputs=[tags_input],
        outputs=recommendation_outputs + feedback_inputs
    )

    def collect_feedback(tags, *feedbacks):
        global song_recommendations
        feedbacks = list(feedbacks)
        record_feedback(tags, song_recommendations, feedbacks)
        return "Feedback submitted successfully!"

    feedback_confirmation = gr.Markdown("")

    feedback_submit_button.click(
        fn=collect_feedback,
        inputs=[tags_input] + feedback_inputs,
        outputs=feedback_confirmation
    )

    for i in range(5):
        with gr.Row():
            gr.Column([recommendation_outputs[i], feedback_inputs[i]])

    with gr.Row():
        gr.Column([feedback_submit_button, feedback_confirmation])

app.launch()