File size: 6,344 Bytes
9dd7d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
!pip install python-dotenv
# imports
import pandas as pd
import h5py
import os
from sqlalchemy import create_engine
import requests
import time
from dotenv import load_dotenv
import pandas as pd

df = pd.read_csv('/content/drive/MyDrive/CMPE-258: Team Neurobytes/Neurobytes/db/data/music_data.csv')
df.dropna(inplace=True)

import pandas as pd
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.model_selection import train_test_split
import torch.optim as optim

# Encode categorical data
label_encoders = {}
unknown_label = 'unknown'  # Define an unknown label

for column in ['artist_name', 'tags', 'title']:
    le = LabelEncoder()

    # Get unique categories plus an 'unknown' category
    unique_categories = df[column].unique().tolist()
    # Add 'unknown' to the list of categories
    unique_categories.append(unknown_label)

    # Fit the LabelEncoder to these categories
    le.fit(unique_categories)
    df[column] = le.transform(df[column].astype(str))

    # Store the encoder
    label_encoders[column] = le


# Normalize numerical features
scaler = MinMaxScaler()
df[['duration', 'listeners', 'playcount']] = scaler.fit_transform(
    df[['duration', 'listeners', 'playcount']])

# Split data into features and target
X = df[['artist_name', 'tags', 'duration', 'listeners', 'playcount']]
y = df['title']

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42)

class SongRecommender(nn.Module):
  def __init__(self):
      super(SongRecommender, self).__init__()
      self.fc1 = nn.Linear(5, 128)  # Adjust input features if needed
      self.fc2 = nn.Linear(128, 256)
      self.fc3 = nn.Linear(256, 128)
      # Output size = number of unique titles including 'unknown'
      # Add 1 for the 'unknown' label
      self.output = nn.Linear(128, len(y.unique()) + 1)

  def forward(self, x):
      x = F.relu(self.fc1(x))
      x = F.relu(self.fc2(x))
      x = F.relu(self.fc3(x))
      x = self.output(x)
      return x


model = SongRecommender()
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

def train_model(model, X_train, y_train, X_test, y_test):
    train_loader = DataLoader(
        list(zip(X_train.values.astype(float), y_train)), batch_size=50, shuffle=True)
    test_loader = DataLoader(
        list(zip(X_test.values.astype(float), y_test)), batch_size=50, shuffle=False)

    model.train()
    for epoch in range(50):  # Number of epochs
        train_loss = 0
        for features, labels in train_loader:
            optimizer.zero_grad()
            outputs = model(torch.tensor(features).float())
            # Ensure labels are long type
            loss = criterion(outputs, torch.tensor(labels).long())
            loss.backward()
            optimizer.step()
            train_loss += loss.item()

        # Validation phase
        model.eval()
        validation_loss = 0
        for features, labels in test_loader:
            outputs = model(torch.tensor(features).float())
            loss = criterion(outputs, torch.tensor(labels).long())
            validation_loss += loss.item()

        print(f'Epoch {epoch+1}, Training Loss: {train_loss / len(train_loader)}, Validation Loss: {validation_loss / len(test_loader)}')
train_model(model, X_train, y_train, X_test, y_test)
# save the model
torch.save(model.state_dict(), 'model.pth')
# load the model
model = SongRecommender()
def recommend_songs(model, input_features):
    model.eval()
    print(input_features)
    with torch.no_grad():
        try:
            artist_index = label_encoders['artist_name'].transform(
                [input_features['artist_name']])
        except ValueError:
            artist_index = label_encoders['artist_name'].transform(['unknown'])

        try:
            tags_index = label_encoders['tags'].transform(
                [input_features['tags']])
        except ValueError:
            tags_index = label_encoders['tags'].transform(['unknown'])

        # Create a DataFrame with feature names
        scaled_features = pd.DataFrame(
            [[input_features['duration'], input_features['listeners'],
                input_features['playcount']]],
            columns=['duration', 'listeners', 'playcount']
        )
        scaled_features = scaler.transform(scaled_features)[0]

        features = torch.tensor(
            [artist_index[0], tags_index[0], *scaled_features]).float().unsqueeze(0)
        predictions = model(features)
        top_5_values, top_5_indices = predictions.topk(5)
        recommended_song_ids = top_5_indices.squeeze().tolist()
        
        return label_encoders['title'].inverse_transform(recommended_song_ids)

import requests

def fetch_song_data(api_key, artist_name, track_name):
    url = "http://ws.audioscrobbler.com/2.0/"
    params = {
        'method': 'track.getInfo',
        'api_key': api_key,
        'artist': artist_name,
        'track': track_name,
        'format': 'json'
    }
    response = requests.get(url, params=params)
    print(response.content)
    return response.json() if response.status_code == 200 else {}


def parse_song_data(song_data):
    if song_data and 'track' in song_data:
        track = song_data['track']
        return {
            'artist_name': track['artist']['name'],
            'tags': ', '.join([tag['name'] for tag in track.get('toptags', {}).get('tag', [])]),
            'duration': float(track.get('duration', 0)),
            'listeners': int(track.get('listeners', 0)),
            'playcount': int(track.get('playcount', 0)),
            'album': track.get('album', {}).get('title', 'Unknown')
        }
    return {}
from dotenv import load_dotenv
import os

load_dotenv()
api_key = os.getenv('LASTFM_API_KEY')

artist_name = 'Lagy Gaga'
track_name = 'Poker Face'

# Fetch and parse song data
song_data = fetch_song_data(api_key, artist_name, track_name)
parsed_data = parse_song_data(song_data)

print(song_data)
# if the song is not found, or the tags column is empty, print a message
if not parsed_data or not parsed_data['tags']:
    print("Song not found or tags not available.")

else:
    recommend_songs(model, parsed_data)