File size: 13,242 Bytes
9dd7d9c
84c3487
9dd7d9c
84c3487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd7d9c
84c3487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd7d9c
 
84c3487
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XeyJCRFOLOvg"
      },
      "source": [
        "# **Evaluating the Recommendation Model**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 305,
      "metadata": {
        "id": "EWiqFUizLOvh"
      },
      "outputs": [],
      "source": [
        "import gradio as gr\n",
        "import torch\n",
        "import torch.nn as nn\n",
        "from joblib import load\n",
        "import sklearn"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 306,
      "metadata": {
        "id": "egV9aaWzLOvk"
      },
      "outputs": [],
      "source": [
        "user_preferences = pd.read_csv('user_preferences.zip')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 307,
      "metadata": {
        "id": "-7EqGsy7LOvj"
      },
      "outputs": [],
      "source": [
        "# Define the same neural network model\n",
        "class ImprovedSongRecommender(nn.Module):\n",
        "    def __init__(self, input_size, num_titles):\n",
        "        super(ImprovedSongRecommender, self).__init__()\n",
        "        self.fc1 = nn.Linear(input_size, 128)\n",
        "        self.bn1 = nn.BatchNorm1d(128)\n",
        "        self.fc2 = nn.Linear(128, 256)\n",
        "        self.bn2 = nn.BatchNorm1d(256)\n",
        "        self.fc3 = nn.Linear(256, 128)\n",
        "        self.bn3 = nn.BatchNorm1d(128)\n",
        "        self.output = nn.Linear(128, num_titles)\n",
        "        self.dropout = nn.Dropout(0.5)\n",
        "\n",
        "    def forward(self, x):\n",
        "        x = torch.relu(self.bn1(self.fc1(x)))\n",
        "        x = self.dropout(x)\n",
        "        x = torch.relu(self.bn2(self.fc2(x)))\n",
        "        x = self.dropout(x)\n",
        "        x = torch.relu(self.bn3(self.fc3(x)))\n",
        "        x = self.dropout(x)\n",
        "        x = self.output(x)\n",
        "        return x\n",
        "\n",
        "# Load the trained model\n",
        "model_path = \"improved_model.pth\"\n",
        "num_unique_titles = 4855"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 308,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "WnWXqoEeLOvk",
        "outputId": "bc9d2c9a-6e8c-40b8-8cff-303d23b38cbd"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "ImprovedSongRecommender(\n",
              "  (fc1): Linear(in_features=2, out_features=128, bias=True)\n",
              "  (bn1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
              "  (fc2): Linear(in_features=128, out_features=256, bias=True)\n",
              "  (bn2): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
              "  (fc3): Linear(in_features=256, out_features=128, bias=True)\n",
              "  (bn3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
              "  (output): Linear(in_features=128, out_features=4855, bias=True)\n",
              "  (dropout): Dropout(p=0.5, inplace=False)\n",
              ")"
            ]
          },
          "metadata": {},
          "execution_count": 308
        }
      ],
      "source": [
        "model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)\n",
        "model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))\n",
        "model.eval()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 309,
      "metadata": {
        "id": "s5acd8QeLOvk"
      },
      "outputs": [],
      "source": [
        "# Load the label encoders and scaler\n",
        "label_encoders_path = \"new_label_encoders.joblib\"\n",
        "scaler_path = \"new_scaler.joblib\"\n",
        "\n",
        "label_encoders = load(label_encoders_path)\n",
        "scaler = load(scaler_path)\n",
        "\n",
        "# Create a mapping from encoded indices to actual song titles\n",
        "index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.preprocessing import LabelEncoder, MinMaxScaler\n",
        "import joblib\n",
        "import re\n",
        "\n",
        "# Function to clean tags and artist names\n",
        "def clean_text(text):\n",
        "    # Convert to lowercase\n",
        "    text = text.lower()\n",
        "    # Remove special characters and digits\n",
        "    text = re.sub(r'[^a-zA-Z\\s]', '', text)\n",
        "    # Remove extra white spaces\n",
        "    text = re.sub(r'\\s+', ' ', text).strip()\n",
        "    return text\n",
        "\n",
        "columns_to_check = ['tags', 'artist', 'tags', 'song', 'listeners', 'playcount']  # Specify the columns you want to check for NaN values\n",
        "user_preferences = user_preferences.dropna(subset=columns_to_check)\n",
        "\n",
        "\n",
        "# Clean 'tags' and 'artist_name' columns\n",
        "user_preferences['tags'] = user_preferences['tags'].apply(clean_text)\n",
        "user_preferences['artist'] = user_preferences['artist'].apply(clean_text)\n",
        "\n",
        "def label_encode_data(df):\n",
        "    df = df.copy(deep=True)\n",
        "    label_encoders = {}\n",
        "    unknown_label = 'unknown'  # Define an unknown label\n",
        "\n",
        "    for column in ['tags', 'song', 'artist']:\n",
        "        le = LabelEncoder()\n",
        "        unique_categories = df[column].unique().tolist()\n",
        "        unique_categories.append(unknown_label)\n",
        "        le.fit(unique_categories)\n",
        "        df[column] = le.transform(df[column].astype(str))\n",
        "        label_encoders[column] = le\n",
        "\n",
        "    return df, label_encoders\n",
        "\n",
        "# Normalize numerical features\n",
        "scaler = MinMaxScaler()\n",
        "user_preferences[['listeners', 'playcount']] = scaler.fit_transform(user_preferences[['listeners', 'playcount']])\n",
        "\n",
        "# Label encode categorical features\n",
        "df_scaled, label_encoders = label_encode_data(user_preferences.loc[:, ['tags', 'artist', 'listeners', 'playcount', 'song']])"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "qeuVdOrZMX2H",
        "outputId": "3e38f50d-a6fe-4ec4-eafe-c119ef4228fe"
      },
      "execution_count": 310,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "<ipython-input-310-b2dbd9207146>:20: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame.\n",
            "Try using .loc[row_indexer,col_indexer] = value instead\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  user_preferences['tags'] = user_preferences['tags'].apply(clean_text)\n",
            "<ipython-input-310-b2dbd9207146>:21: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame.\n",
            "Try using .loc[row_indexer,col_indexer] = value instead\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  user_preferences['artist'] = user_preferences['artist'].apply(clean_text)\n",
            "<ipython-input-310-b2dbd9207146>:40: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame.\n",
            "Try using .loc[row_indexer,col_indexer] = value instead\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  user_preferences[['listeners', 'playcount']] = scaler.fit_transform(user_preferences[['listeners', 'playcount']])\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.model_selection import train_test_split"
      ],
      "metadata": {
        "id": "f8Z0xtfCOWkC"
      },
      "execution_count": 311,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Split data into features and target\n",
        "X = df_scaled[['tags', 'artist']]\n",
        "y = df_scaled['song']\n",
        "\n",
        "# Split the dataset into training and testing sets\n",
        "X_valid, X_test, y_valid, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
        "print(\"Data split into validation and testing sets.\")"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "tuyHessoL9AS",
        "outputId": "9af89ed4-5ce3-423a-a60e-e6c012b35421"
      },
      "execution_count": 312,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Data split into validation and testing sets.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import torch\n",
        "import torch.nn as nn\n",
        "import torch.optim as optim\n",
        "from torch.utils.data import DataLoader\n",
        "import numpy as np\n",
        "from sklearn.metrics import accuracy_score"
      ],
      "metadata": {
        "id": "YO3SpUROPRIL"
      },
      "execution_count": 313,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "valid_loader = DataLoader(list(zip(X_valid.values.astype(float), y_valid)), batch_size=1, shuffle=True)\n",
        "test_loader = DataLoader(list(zip(X_test.values.astype(float), y_test)), batch_size=1, shuffle=False)\n"
      ],
      "metadata": {
        "id": "ddLMncl-Paj5"
      },
      "execution_count": 314,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "valid_accuracy = 0\n",
        "test_accuracy = 0\n",
        "for features, labels in valid_loader:\n",
        "    preds = model(features.float().detach())\n",
        "\n",
        "    # Get the predicted class (the one with the highest score)\n",
        "    _, predicted_class = torch.max(preds, 1)\n",
        "\n",
        "    # Convert to numpy arrays\n",
        "    predicted_class_np = predicted_class.numpy()\n",
        "    labels_np = labels.numpy()\n",
        "\n",
        "    # Calculate accuracy\n",
        "    accuracy = accuracy_score(labels_np, predicted_class_np)\n",
        "    valid_accuracy += accuracy\n",
        "\n",
        "for features, labels in test_loader:\n",
        "    preds = model(features.float())\n",
        "    # Get the predicted class (the one with the highest score)\n",
        "    _, predicted_class = torch.max(preds, 1)\n",
        "\n",
        "    # Convert to numpy arrays\n",
        "    predicted_class_np = predicted_class.numpy()\n",
        "    labels_np = labels.numpy()\n",
        "\n",
        "    # Calculate accuracy\n",
        "    accuracy = accuracy_score(labels_np, predicted_class_np)\n",
        "    test_accuracy += accuracy"
      ],
      "metadata": {
        "id": "CIH4yNETOR6r"
      },
      "execution_count": 315,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "print('The loss of the model on the unseen validation dataset is: ', valid_accuracy)\n",
        "print('The loss of the model on the unseen test dataset is: ', test_accuracy)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Tf5kf1dMOpdw",
        "outputId": "5377af95-5412-4593-e4b7-c74ec03425a0"
      },
      "execution_count": 316,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "The loss of the model on the unseen validation dataset is:  2.0\n",
            "The loss of the model on the unseen test dataset is:  0.0\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "TYbj1lHYQZtg"
      },
      "execution_count": 316,
      "outputs": []
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "base",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.8.1"
    },
    "colab": {
      "provenance": []
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}