Spaces:
Sleeping
Sleeping
File size: 8,500 Bytes
a136ebd bebbf0f bbe5a2f a136ebd 393577d a136ebd 29191e5 a136ebd dc30935 09c50ed bbe5a2f 29191e5 a136ebd 29191e5 a136ebd dc30935 a136ebd 6fa1c6b bbe5a2f 7d56735 b789611 e6d5541 7d56735 e6d5541 7d56735 e6d5541 a136ebd 8cc48a4 a4684f0 8cc48a4 a136ebd 8cc48a4 a136ebd 8cc48a4 0fca847 8cc48a4 a136ebd 4746643 a136ebd bcba21f a136ebd 439aaf4 a136ebd 439aaf4 a136ebd 4746643 a136ebd 4746643 a136ebd 4746643 a136ebd bcba21f 595a477 a136ebd bebbf0f 880b9c8 e5ecf3c 880b9c8 4d5b15d e5ecf3c 4d5b15d e5ecf3c 4d5b15d e5ecf3c c74b0db e5ecf3c c74b0db e5ecf3c 28bae9c e5ecf3c 4d5b15d d56ec24 65a48f9 1ad5761 65a48f9 1ad5761 b789611 dc30935 2b0bff4 dc30935 3a352e4 dc30935 760dcb4 8b28c8c 8d9e442 760dcb4 8b28c8c 4f00765 760dcb4 dc30935 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os
from bs4 import BeautifulSoup
import os
from mistralai import Mistral
import requests
from requests.auth import HTTPBasicAuth
from PIL import Image
from io import BytesIO
import pandas as pd
from urllib.parse import urlparse
import os
import cv2
import numpy as np
import pytesseract
import subprocess
from PIL import Image
from pypdf import PdfReader
from ai71 import AI71
import os
import PyPDF2
import pandas as pd
model = "mistral-large-latest"
api_key='xQ2Zhfsp4cLar4lvBRDWZKljvp0Ej427'
client = Mistral(api_key=api_key)
def extract_text_from_image(image_path):
img = cv2.imread(image_path)
if img is None:
raise ValueError("Image not found or unable to load")
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
text = pytesseract.image_to_string(img_rgb)
return text
from inference_sdk import InferenceHTTPClient
import base64
UPLOAD_FOLDER = '/code/uploads'
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
pdf_text=''
AI71_API_KEY = os.environ.get('AI71_API_KEY')
def generate_response(query,chat_history):
chat_response = client.chat.complete(
model= model,
messages = [
{
"role": "user",
"content": f"{User_querry}? provide response within 2 sentence",
},
]
)
return chat_response.choices[0].message.content
class ConversationBufferMemory:
def __init__(self, max_size):
self.memory = []
self.max_size = max_size
def add_to_memory(self, interaction):
self.memory.append(interaction)
if len(self.memory) > self.max_size:
self.memory.pop(0) # Remove the oldest interaction
def get_memory(self):
return self.memory
def predict_pest(filepath):
try:
CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key="oF1aC4b1FBCDtK8CoKx7"
)
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1")
a= result['predictions'][0]
if a=='x':
return 'APHIDS'
return a
except:
return None
def predict_disease(filepath):
try:
CLIENT = InferenceHTTPClient(
api_url="https://classify.roboflow.com",
api_key="oF1aC4b1FBCDtK8CoKx7"
)
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1")
a= result['predicted_classes'][0]
if a=='x':
return 'APHIDS'
return a
except:
return None
def convert_img(url, account_sid, auth_token):
if 1==1:
# Make the request to the media URL with authentication
response = requests.get(url.replace(' ',''), auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status() # Raise an error for bad responses
# Determine a filename from the URL
parsed_url = urlparse(url.replace(' ',''))
media_id = parsed_url.path.split('/')[-1] # Get the last part of the URL path
filename = f"image.jpg"
# Save the media content to a .txt file
txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(txt_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {txt_filepath}")
return txt_filepath
else :
return 'errir in process none'
def get_weather(city):
city=city.strip()
city=city.replace(' ',"+")
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}')
soup=BeautifulSoup(r.text,'html.parser')
temp = soup.find('div', class_='BNeawe iBp4i AP7Wnd').text
return (temp)
from zenrows import ZenRowsClient
from bs4 import BeautifulSoup
Zenrow_api=os.environ.get('Zenrow_api')
# Initialize ZenRows client with your API key
client = ZenRowsClient(str(Zenrow_api))
def get_rates(): # URL to scrape
url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL"
# Fetch the webpage content using ZenRows
response = client.get(url)
# Check if the request was successful
if response.status_code == 200:
# Parse the raw HTML content with BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Find the table rows containing the data
rows = soup.select('table tbody tr')
data = {}
for row in rows:
# Extract commodity and price using BeautifulSoup
columns = row.find_all('td')
if len(columns) >= 2:
commodity = columns[0].get_text(strip=True)
price = columns[1].get_text(strip=True)
if '₹' in price:
data[commodity] = price
return str(data)+" This are the prices for 1 kg"
def get_news():
news=[] # URL to scrape
url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr"
# Fetch the webpage content using ZenRows
response = client.get(url)
# Check if the request was successful
if response.status_code == 200:
# Parse the raw HTML content with BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Find the table rows containing the data
headlines = soup.find_all("div", class_="eachStory")
for story in headlines:
# Extract the headline
headline = story.find('h3').text.strip()
news.append(headline)
return news
def download_and_save_as_txt(url, account_sid, auth_token):
global pdf_text
try:
# Make the request to the media URL with authentication
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status() # Raise an error for bad responses
# Determine a filename from the URL
parsed_url = urlparse(url)
media_id = parsed_url.path.split('/')[-1] # Get the last part of the URL path
filename = f"pdf_file.pdf"
# Save the media content to a .txt file
txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(txt_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {txt_filepath}")
pdf_text=extract_text_from_pdf(txt_filepath)
return txt_filepath
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
def extract_text_from_pdf(pdf_path):
global pdf_text
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
pdf_text = ''
for page_num in range(len(reader.pages)):
page = reader.pages[page_num]
pdf_text += page.extract_text()
return pdf_text
def respond_pdf(query):
extracted_text=pdf_text
res = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-11b",
messages=[
{"role": "system", "content": "You are a pdf answering assistant and you have a pdf as a data."},
{"role": "user", "content": f"Content:{extracted_text},Query:{query}"},
],
stream=True,
):
if chunk.choices[0].delta.content:
res += chunk.choices[0].delta.content
return ( res.replace("User:",'').strip())
def booktask(data):
res = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-11b",
messages=[
{"role": "system", "content": "You are an assistant."},
{"role": "user", "content": f"My bookkeeping data is {data}.Provide the data in points."},
],
stream=True,
):
if chunk.choices[0].delta.content:
res += chunk.choices[0].delta.content
return ( res.replace("User:",'').strip())
def return_bookdata(querry,data):
res = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-11b",
messages=[
{"role": "system", "content": "You are an assistant."},
{"role": "user", "content": f"My notes data is {data}.user:{querry.replace('bookkeeping','data')}.Give the format of bookkeeping data in points.Make your response very concise to maximum of 10 points"},
],
stream=True,
):
if chunk.choices[0].delta.content:
res += chunk.choices[0].delta.content
return ( res.replace("User:",'').strip()) |