File size: 13,551 Bytes
052e52f
 
 
 
3f861d9
cbda7a6
72b4474
0fd9053
 
 
 
 
 
ddcab83
0fd9053
 
052e52f
77e49e3
05b09c6
cbda7a6
 
d9a1f2d
0fd9053
d9a1f2d
0fd9053
 
 
 
 
 
 
 
d9a1f2d
0fd9053
 
 
d9a1f2d
6073c44
85cb515
052e52f
 
 
 
 
0fd9053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a1f2d
0fd9053
 
 
 
 
d9a1f2d
 
0fd9053
 
 
 
d9a1f2d
 
0fd9053
 
 
 
 
d9a1f2d
0fd9053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a1f2d
0fd9053
 
d9a1f2d
0fd9053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a1f2d
 
 
 
 
 
0fd9053
 
d9a1f2d
 
0fd9053
d9a1f2d
0fd9053
d9a1f2d
0fd9053
 
 
 
 
 
 
 
 
 
 
 
d9a1f2d
0fd9053
d9a1f2d
 
0fd9053
d9a1f2d
0fd9053
 
 
 
 
 
 
 
 
 
 
 
d9a1f2d
0fd9053
 
d9a1f2d
0fd9053
 
 
 
 
 
 
 
 
 
 
 
 
d9a1f2d
0fd9053
 
 
 
 
f95ea5a
0fd9053
 
f95ea5a
 
 
 
 
 
 
 
 
 
 
 
 
 
558f5d1
 
 
 
 
 
 
 
 
 
 
 
0fd9053
558f5d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd9053
 
558f5d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd9053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b09c6
0fd9053
 
 
 
558f5d1
 
 
052e52f
558f5d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbda7a6
558f5d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf8e3e
 
 
 
 
 
 
 
 
 
 
 
1a1cf31
 
 
 
 
05b09c6
691414c
1a1cf31
691414c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from flask import Flask, request
from twilio.twiml.messaging_response import MessagingResponse
from twilio.rest import Client
import os
import requests
from PIL import Image
import shutil

from langchain.vectorstores.chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms.ollama import Ollama
from get_embedding_function import get_embedding_function
from langchain.document_loaders.pdf import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema.document import Document

app = Flask(__name__)
UPLOAD_FOLDER = '/code/uploads'
CHROMA_PATH = UPLOAD_FOLDER  # Use the same folder for Chroma
if not os.path.exists(UPLOAD_FOLDER):
    os.makedirs(UPLOAD_FOLDER)

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

class ConversationBufferMemory:
    def __init__(self, max_size=6):
        self.memory = []
        self.max_size = max_size

    def add_to_memory(self, interaction):
        self.memory.append(interaction)
        if len(self.memory) > self.max_size:
            self.memory.pop(0)

    def get_memory(self):
        return self.memory

conversation_memory = ConversationBufferMemory(max_size=2)

account_sid = os.environ.get('TWILIO_ACCOUNT_SID')
auth_token = os.environ.get('TWILIO_AUTH_TOKEN')
client = Client(account_sid, auth_token)
from_whatsapp_number = 'whatsapp:+14155238886'

PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""

from bs4 import BeautifulSoup
import requests
from requests.auth import HTTPBasicAuth
from PIL import Image
from io import BytesIO
import pandas as pd
from urllib.parse import urlparse
import os
from pypdf import PdfReader
from ai71 import AI71
import uuid

from inference_sdk import InferenceHTTPClient
import base64

AI71_API_KEY = os.environ.get('AI71_API_KEY')

def generate_response(query, chat_history):
    response = ''
    for chunk in AI71(AI71_API_KEY).chat.completions.create(
            model="tiiuae/falcon-180b-chat",
            messages=[
                {"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences. Greet the user if the user greets you."},
                {"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''},
            ],
            stream=True,
    ):
        if chunk.choices[0].delta.content:
            response += chunk.choices[0].delta.content
    return response.replace("###", '').replace('\nUser:', '')

def predict_pest(filepath):
    CLIENT = InferenceHTTPClient(
        api_url="https://detect.roboflow.com",
        api_key="oF1aC4b1FBCDtK8CoKx7"
    )
    result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1")
    return result['predictions'][0]
    

def predict_disease(filepath):
    CLIENT = InferenceHTTPClient(
        api_url="https://classify.roboflow.com",
        api_key="oF1aC4b1FBCDtK8CoKx7"
    )
    result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1")
    return result['predicted_classes'][0]

def convert_img(url, account_sid, auth_token):
    try:
        response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
        response.raise_for_status()

        parsed_url = urlparse(url)
        media_id = parsed_url.path.split('/')[-1]
        filename = f"downloaded_media_{media_id}"

        media_filepath = os.path.join(UPLOAD_FOLDER, filename)
        with open(media_filepath, 'wb') as file:
            file.write(response.content)
        
        print(f"Media downloaded successfully and saved as {media_filepath}")

        with open(media_filepath, 'rb') as img_file:
            image = Image.open(img_file)

            converted_filename = f"image.jpg"
            converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename)
            image.convert('RGB').save(converted_filepath, 'JPEG')
            return converted_filepath

    except requests.exceptions.HTTPError as err:
        print(f"HTTP error occurred: {err}")
    except Exception as err:
        print(f"An error occurred: {err}")

def get_weather(city):
    city = city.strip().replace(' ', '+')
    r = requests.get(f'https://www.google.com/search?q=weather+in+{city}')
    soup = BeautifulSoup(r.text, 'html.parser')
    temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text
    return temperature

from zenrows import ZenRowsClient
Zenrow_api = os.environ.get('Zenrow_api')
zenrows_client = ZenRowsClient(Zenrow_api)

def get_rates():
    url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL"
    response = zenrows_client.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.content, 'html.parser')
        rows = soup.select('table tbody tr')
        data = {}
        for row in rows:
            columns = row.find_all('td')
            if len(columns) >= 2:
                commodity = columns[0].get_text(strip=True)
                price = columns[1].get_text(strip=True)
                if '₹' in price:
                    data[commodity] = price
    return str(data) + " These are the prices for 1 kg"

def get_news():
    news = []
    url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr"
    response = zenrows_client.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.content, 'html.parser')
        headlines = soup.find_all("div", class_="eachStory")
        for story in headlines:
            headline = story.find('h3').text.strip()
            news.append(headline)
    return news

def download_and_save_as_txt(url, account_sid, auth_token):
    try:
        response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
        response.raise_for_status()

        parsed_url = urlparse(url)
        media_id = parsed_url.path.split('/')[-1]
        filename = f"pdf_file.pdf"

        txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
        with open(txt_filepath, 'wb') as file:
            file.write(response.content)
        
        print(f"Media downloaded successfully and saved as {txt_filepath}")
        return txt_filepath

    except requests.exceptions.HTTPError as err:
        print(f"HTTP error occurred: {err}")
    except Exception as err:
        print(f"An error occurred: {err}")

def query_rag(query_text: str):
    embedding_function = get_embedding_function()
    db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
    results = db.similarity_search_with_score(query_text, k=5)
    context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
    
    prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
    prompt = prompt_template.format(context=context_text, question=query_text)

    response = ''
    for chunk in AI71(AI71_API_KEY).chat.completions.create(
            model="tiiuae/falcon-180b-chat",
            messages=[
                {"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."},
                {"role": "user", "content": f'''Answer the following query based on the given context: {prompt}'''},
            ],
            stream=True,
    ):
        if chunk.choices[0].delta.content:
            response += chunk.choices[0].delta.content
    
    return response.replace("###", '').replace('\nUser:', '')
def download_file(url, extension):
    try:
        response = requests.get(url)
        response.raise_for_status()
        filename = f"{uuid.uuid4()}{extension}"
        file_path = os.path.join(UPLOAD_FOLDER, filename)
        
        with open(file_path, 'wb') as file:
            file.write(response.content)
        
        print(f"File downloaded and saved as {file_path}")
        return file_path

    except requests.exceptions.HTTPError as err:
        print(f"HTTP error occurred: {err}")
    except Exception as err:
        print(f"An error occurred: {err}")
        return None
def save_pdf_and_update_database(pdf_filepath):
    try:
        document_loader = PyPDFDirectoryLoader(UPLOAD_FOLDER)
        documents = document_loader.load()
        
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=800,
            chunk_overlap=80,
            length_function=len,
            is_separator_regex=False,
        )
        chunks = text_splitter.split_documents(documents)
        
        add_to_chroma(chunks)
        print(f"PDF processed and data updated in Chroma.")
    except Exception as e:
        print(f"Error in processing PDF: {e}")

def add_to_chroma(chunks: list[Document]):
    try:
        db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
        chunks_with_ids = calculate_chunk_ids(chunks)
        existing_items = db.get(include=[])
        existing_ids = set(existing_items["ids"])

        new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids]

        if new_chunks:
            new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
            db.add_documents(new_chunks, ids=new_chunk_ids)
            db.persist()
            print(f"Chunks added to Chroma.")
    except Exception as e:
        print(f"Error adding chunks to Chroma: {e}")
def calculate_chunk_ids(chunks):
    last_page_id = None
    current_chunk_index = 0

    for chunk in chunks:
        source = chunk.metadata.get("source")
        page = chunk.metadata.get("page")
        current_page_id = f"{source}:{page}"

        if current_page_id == last_page_id:
            current_chunk_index += 1
        else:
            current_chunk_index = 0

        last_page_id = current_page_id
        chunk_id = f"{current_page_id}:{current_chunk_index}"
        chunk.metadata["id"] = chunk_id

    return chunks


@app.route('/whatsapp', methods=['POST'])
def whatsapp_webhook():
    incoming_msg = request.values.get('Body', '').lower()
    sender = request.values.get('From')
    num_media = int(request.values.get('NumMedia', 0))

    chat_history = conversation_memory.get_memory()

    if num_media > 0:
        media_url = request.values.get('MediaUrl0')
        response_text = media_url
        content_type = request.values.get('MediaContentType0')
        if content_type.startswith('image/'):
            filepath = convert_img(media_url, account_sid, auth_token)
            try:
                disease = predict_disease(filepath)
            except:
                disease = None
            try:
                pest = predict_pest(filepath)
            except:
                pest = None

            if disease:
                response_text = f"Detected disease: {disease}"
                disease_info = generate_response(f"Provide brief information about {disease} in plants", chat_history)
                response_text += f"\n\nAdditional information: {disease_info}"
            elif pest:
                response_text = f"Detected pest: {pest}"
                pest_info = generate_response(f"Provide brief information about {pest} in agriculture", chat_history)
                response_text += f"\n\nAdditional information: {pest_info}"
            else:
                response_text = "Please upload another image with good quality."

        else:
            filepath = download_and_save_as_txt(media_url, account_sid, auth_token)
            response_text = query_rag(filepath)
    
    elif ('weather' in incoming_msg.lower()) or ('climate' in incoming_msg.lower()) or (
            'temperature' in incoming_msg.lower()):
        response_text = get_weather(incoming_msg.lower())
    elif 'bookkeeping' in incoming_msg:
        response_text = "Please provide the details you'd like to record."
    elif ('rates' in incoming_msg.lower()) or ('price' in incoming_msg.lower()) or (
            'market' in incoming_msg.lower()) or ('rate' in incoming_msg.lower()) or ('prices' in incoming_msg.lower()):
        rates = get_rates()
        response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history)
    elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()):
        news = get_news()
        response_text = generate_response(incoming_msg + ' data is ' + str(news), chat_history)
    else:
        # Check if the query is related to a PDF document
        if 'from pdf' in incoming_msg or 'in pdf' in incoming_msg:
            response_text = query_rag(incoming_msg)
        else:
            response_text = generate_response(incoming_msg, chat_history)

    conversation_memory.add_to_memory({"user": incoming_msg, "assistant": response_text})
    send_message(sender, response_text)
    return '', 204


def send_message(to, body):
    try:
        message = client.messages.create(
            from_=from_whatsapp_number,
            body=body,
            to=to
        )
        print(f"Message sent with SID: {message.sid}")
    except Exception as e:
        print(f"Error sending message: {e}")
        
def send_initial_message(to_number):
    send_message(
        f'whatsapp:{to_number}',
        'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.'
    )
if __name__ == "__main__":
    send_initial_message('919080522395')
    send_initial_message('916382792828')
    app.run(host='0.0.0.0', port=7860)