Spaces:
Sleeping
Sleeping
File size: 13,551 Bytes
052e52f 3f861d9 cbda7a6 72b4474 0fd9053 ddcab83 0fd9053 052e52f 77e49e3 05b09c6 cbda7a6 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 6073c44 85cb515 052e52f 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 d9a1f2d 0fd9053 f95ea5a 0fd9053 f95ea5a 558f5d1 0fd9053 558f5d1 0fd9053 558f5d1 0fd9053 05b09c6 0fd9053 558f5d1 052e52f 558f5d1 cbda7a6 558f5d1 bcf8e3e 1a1cf31 05b09c6 691414c 1a1cf31 691414c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
from flask import Flask, request
from twilio.twiml.messaging_response import MessagingResponse
from twilio.rest import Client
import os
import requests
from PIL import Image
import shutil
from langchain.vectorstores.chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms.ollama import Ollama
from get_embedding_function import get_embedding_function
from langchain.document_loaders.pdf import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema.document import Document
app = Flask(__name__)
UPLOAD_FOLDER = '/code/uploads'
CHROMA_PATH = UPLOAD_FOLDER # Use the same folder for Chroma
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
class ConversationBufferMemory:
def __init__(self, max_size=6):
self.memory = []
self.max_size = max_size
def add_to_memory(self, interaction):
self.memory.append(interaction)
if len(self.memory) > self.max_size:
self.memory.pop(0)
def get_memory(self):
return self.memory
conversation_memory = ConversationBufferMemory(max_size=2)
account_sid = os.environ.get('TWILIO_ACCOUNT_SID')
auth_token = os.environ.get('TWILIO_AUTH_TOKEN')
client = Client(account_sid, auth_token)
from_whatsapp_number = 'whatsapp:+14155238886'
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
from bs4 import BeautifulSoup
import requests
from requests.auth import HTTPBasicAuth
from PIL import Image
from io import BytesIO
import pandas as pd
from urllib.parse import urlparse
import os
from pypdf import PdfReader
from ai71 import AI71
import uuid
from inference_sdk import InferenceHTTPClient
import base64
AI71_API_KEY = os.environ.get('AI71_API_KEY')
def generate_response(query, chat_history):
response = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences. Greet the user if the user greets you."},
{"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
return response.replace("###", '').replace('\nUser:', '')
def predict_pest(filepath):
CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key="oF1aC4b1FBCDtK8CoKx7"
)
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1")
return result['predictions'][0]
def predict_disease(filepath):
CLIENT = InferenceHTTPClient(
api_url="https://classify.roboflow.com",
api_key="oF1aC4b1FBCDtK8CoKx7"
)
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1")
return result['predicted_classes'][0]
def convert_img(url, account_sid, auth_token):
try:
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status()
parsed_url = urlparse(url)
media_id = parsed_url.path.split('/')[-1]
filename = f"downloaded_media_{media_id}"
media_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(media_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {media_filepath}")
with open(media_filepath, 'rb') as img_file:
image = Image.open(img_file)
converted_filename = f"image.jpg"
converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename)
image.convert('RGB').save(converted_filepath, 'JPEG')
return converted_filepath
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
def get_weather(city):
city = city.strip().replace(' ', '+')
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}')
soup = BeautifulSoup(r.text, 'html.parser')
temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text
return temperature
from zenrows import ZenRowsClient
Zenrow_api = os.environ.get('Zenrow_api')
zenrows_client = ZenRowsClient(Zenrow_api)
def get_rates():
url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL"
response = zenrows_client.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
rows = soup.select('table tbody tr')
data = {}
for row in rows:
columns = row.find_all('td')
if len(columns) >= 2:
commodity = columns[0].get_text(strip=True)
price = columns[1].get_text(strip=True)
if '₹' in price:
data[commodity] = price
return str(data) + " These are the prices for 1 kg"
def get_news():
news = []
url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr"
response = zenrows_client.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
headlines = soup.find_all("div", class_="eachStory")
for story in headlines:
headline = story.find('h3').text.strip()
news.append(headline)
return news
def download_and_save_as_txt(url, account_sid, auth_token):
try:
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status()
parsed_url = urlparse(url)
media_id = parsed_url.path.split('/')[-1]
filename = f"pdf_file.pdf"
txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(txt_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {txt_filepath}")
return txt_filepath
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
def query_rag(query_text: str):
embedding_function = get_embedding_function()
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
results = db.similarity_search_with_score(query_text, k=5)
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
response = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."},
{"role": "user", "content": f'''Answer the following query based on the given context: {prompt}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
return response.replace("###", '').replace('\nUser:', '')
def download_file(url, extension):
try:
response = requests.get(url)
response.raise_for_status()
filename = f"{uuid.uuid4()}{extension}"
file_path = os.path.join(UPLOAD_FOLDER, filename)
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"File downloaded and saved as {file_path}")
return file_path
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
return None
def save_pdf_and_update_database(pdf_filepath):
try:
document_loader = PyPDFDirectoryLoader(UPLOAD_FOLDER)
documents = document_loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=80,
length_function=len,
is_separator_regex=False,
)
chunks = text_splitter.split_documents(documents)
add_to_chroma(chunks)
print(f"PDF processed and data updated in Chroma.")
except Exception as e:
print(f"Error in processing PDF: {e}")
def add_to_chroma(chunks: list[Document]):
try:
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
chunks_with_ids = calculate_chunk_ids(chunks)
existing_items = db.get(include=[])
existing_ids = set(existing_items["ids"])
new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids]
if new_chunks:
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
db.add_documents(new_chunks, ids=new_chunk_ids)
db.persist()
print(f"Chunks added to Chroma.")
except Exception as e:
print(f"Error adding chunks to Chroma: {e}")
def calculate_chunk_ids(chunks):
last_page_id = None
current_chunk_index = 0
for chunk in chunks:
source = chunk.metadata.get("source")
page = chunk.metadata.get("page")
current_page_id = f"{source}:{page}"
if current_page_id == last_page_id:
current_chunk_index += 1
else:
current_chunk_index = 0
last_page_id = current_page_id
chunk_id = f"{current_page_id}:{current_chunk_index}"
chunk.metadata["id"] = chunk_id
return chunks
@app.route('/whatsapp', methods=['POST'])
def whatsapp_webhook():
incoming_msg = request.values.get('Body', '').lower()
sender = request.values.get('From')
num_media = int(request.values.get('NumMedia', 0))
chat_history = conversation_memory.get_memory()
if num_media > 0:
media_url = request.values.get('MediaUrl0')
response_text = media_url
content_type = request.values.get('MediaContentType0')
if content_type.startswith('image/'):
filepath = convert_img(media_url, account_sid, auth_token)
try:
disease = predict_disease(filepath)
except:
disease = None
try:
pest = predict_pest(filepath)
except:
pest = None
if disease:
response_text = f"Detected disease: {disease}"
disease_info = generate_response(f"Provide brief information about {disease} in plants", chat_history)
response_text += f"\n\nAdditional information: {disease_info}"
elif pest:
response_text = f"Detected pest: {pest}"
pest_info = generate_response(f"Provide brief information about {pest} in agriculture", chat_history)
response_text += f"\n\nAdditional information: {pest_info}"
else:
response_text = "Please upload another image with good quality."
else:
filepath = download_and_save_as_txt(media_url, account_sid, auth_token)
response_text = query_rag(filepath)
elif ('weather' in incoming_msg.lower()) or ('climate' in incoming_msg.lower()) or (
'temperature' in incoming_msg.lower()):
response_text = get_weather(incoming_msg.lower())
elif 'bookkeeping' in incoming_msg:
response_text = "Please provide the details you'd like to record."
elif ('rates' in incoming_msg.lower()) or ('price' in incoming_msg.lower()) or (
'market' in incoming_msg.lower()) or ('rate' in incoming_msg.lower()) or ('prices' in incoming_msg.lower()):
rates = get_rates()
response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history)
elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()):
news = get_news()
response_text = generate_response(incoming_msg + ' data is ' + str(news), chat_history)
else:
# Check if the query is related to a PDF document
if 'from pdf' in incoming_msg or 'in pdf' in incoming_msg:
response_text = query_rag(incoming_msg)
else:
response_text = generate_response(incoming_msg, chat_history)
conversation_memory.add_to_memory({"user": incoming_msg, "assistant": response_text})
send_message(sender, response_text)
return '', 204
def send_message(to, body):
try:
message = client.messages.create(
from_=from_whatsapp_number,
body=body,
to=to
)
print(f"Message sent with SID: {message.sid}")
except Exception as e:
print(f"Error sending message: {e}")
def send_initial_message(to_number):
send_message(
f'whatsapp:{to_number}',
'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.'
)
if __name__ == "__main__":
send_initial_message('919080522395')
send_initial_message('916382792828')
app.run(host='0.0.0.0', port=7860)
|