Spaces:
Sleeping
Sleeping
import os | |
CHROMA_PATH = '/code/chroma_db' | |
if not os.path.exists(CHROMA_PATH): | |
os.makedirs(CHROMA_PATH) | |
from langchain.vectorstores.chroma import Chroma | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# Load and process the PDF | |
def save_pdf_and_update_database(pdf_filepath): | |
try: | |
# Load the PDF | |
document_loader = PyPDFLoader(pdf_filepath) | |
documents = document_loader.load() | |
# Split the documents into manageable chunks | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=800, | |
chunk_overlap=80, | |
length_function=len, | |
is_separator_regex=False, | |
) | |
chunks = text_splitter.split_documents(documents) | |
# Initialize Chroma with an embedding function | |
embedding_function = HuggingFaceEmbeddings() | |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) | |
# Add chunks to ChromaDB | |
db.add_documents(chunks) | |
db.persist() | |
print("PDF processed and data updated in Chroma.") | |
except Exception as e: | |
print(f"Error processing PDF: {e}") | |
AI71_API_KEY = os.environ.get('AI71_API_KEY') | |
def generate_response(query, chat_history): | |
response = '' | |
for chunk in AI71(AI71_API_KEY).chat.completions.create( | |
model="tiiuae/falcon-180b-chat", | |
messages=[ | |
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."}, | |
{"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''}, | |
], | |
stream=True, | |
): | |
if chunk.choices[0].delta.content: | |
response += chunk.choices[0].delta.content | |
return response.replace("###", '').replace('\nUser:', '') | |
def query_rag(query_text: str, chat_history): | |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=HuggingFaceEmbeddings()) | |
# Perform a similarity search in ChromaDB | |
results = db.similarity_search_with_score(query_text, k=5) | |
if not results: | |
return "Sorry, I couldn't find any relevant information." | |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results]) | |
# Generate the response using the Falcon model | |
prompt = f"Context:\n{context_text}\n\nQuestion:\n{query_text}" | |
response = generate_response(prompt, chat_history) | |
return response | |
def whatsapp_webhook(): | |
incoming_msg = request.values.get('Body', '').lower() | |
sender = request.values.get('From') | |
num_media = int(request.values.get('NumMedia', 0)) | |
chat_history = conversation_memory.get_memory() | |
if num_media > 0: | |
media_url = request.values.get('MediaUrl0') | |
content_type = request.values.get('MediaContentType0') | |
if content_type == 'application/pdf': | |
# Handle PDF processing | |
filepath = download_file(media_url, ".pdf") | |
save_pdf_and_update_database(filepath) | |
response_text = "PDF has been processed. You can now ask questions related to its content." | |
else: | |
response_text = "Unsupported file type. Please upload a PDF document." | |
else: | |
# Handle queries | |
response_text = query_rag(incoming_msg, chat_history) | |
conversation_memory.add_to_memory({"user": incoming_msg, "assistant": response_text}) | |
send_message(sender, response_text) | |
return '', 204 | |
if __name__ == "__main__": | |
send_initial_message('919080522395') | |
send_initial_message('916382792828') | |
app.run(host='0.0.0.0', port=7860) |