Spaces:
Sleeping
Sleeping
import os | |
from bs4 import BeautifulSoup | |
import requests | |
from requests.auth import HTTPBasicAuth | |
from PIL import Image | |
from io import BytesIO | |
import pandas as pd | |
from urllib.parse import urlparse | |
import os | |
from pypdf import PdfReader | |
from ai71 import AI71 | |
import os | |
from selenium import webdriver | |
from selenium.webdriver.chrome.service import Service | |
from selenium.webdriver.chrome.options import Options | |
from selenium.webdriver.common.by import By | |
from selenium.webdriver.support.ui import WebDriverWait | |
from selenium.webdriver.support import expected_conditions as EC | |
import pandas as pd | |
from inference_sdk import InferenceHTTPClient | |
import base64 | |
UPLOAD_FOLDER = '/code/uploads' | |
if not os.path.exists(UPLOAD_FOLDER): | |
os.makedirs(UPLOAD_FOLDER) | |
AI71_API_KEY = os.environ.get('AI71_API_KEY') | |
def generate_response(query,chat_history): | |
response = '' | |
for chunk in AI71(AI71_API_KEY).chat.completions.create( | |
model="tiiuae/falcon-180b-chat", | |
messages=[ | |
{"role": "system", "content": "You are a best agricultural assistant.Remember to give response not more than 2 sentence.Greet the user if user greets you."}, | |
{"role": "user", | |
"content": f'''Answer the query based on history {chat_history}:{query}'''}, | |
], | |
stream=True, | |
): | |
if chunk.choices[0].delta.content: | |
response += chunk.choices[0].delta.content | |
return response.replace("###", '').replace('\nUser:','') | |
class ConversationBufferMemory: | |
def __init__(self, max_size=6): | |
self.memory = [] | |
self.max_size = max_size | |
def add_to_memory(self, interaction): | |
self.memory.append(interaction) | |
if len(self.memory) > self.max_size: | |
self.memory.pop(0) # Remove the oldest interaction | |
def get_memory(self): | |
return self.memory | |
def predict_pest(filepath): | |
CLIENT = InferenceHTTPClient( | |
api_url="https://detect.roboflow.com", | |
api_key="oF1aC4b1FBCDtK8CoKx7" | |
) | |
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1") | |
return result['predictions'][0] | |
def predict_disease(filepath): | |
CLIENT = InferenceHTTPClient( | |
api_url="https://classify.roboflow.com", | |
api_key="oF1aC4b1FBCDtK8CoKx7" | |
) | |
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1") | |
return result['predicted_classes'][0] | |
def convert_img(url, account_sid, auth_token): | |
try: | |
# Make the request to the media URL with authentication | |
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token)) | |
response.raise_for_status() # Raise an error for bad responses | |
# Determine a filename from the URL | |
parsed_url = urlparse(url) | |
media_id = parsed_url.path.split('/')[-1] # Get the last part of the URL path | |
filename = f"downloaded_media_{media_id}" | |
# Save the media content to a file | |
media_filepath = os.path.join(UPLOAD_FOLDER, filename) | |
with open(media_filepath, 'wb') as file: | |
file.write(response.content) | |
print(f"Media downloaded successfully and saved as {media_filepath}") | |
# Convert the saved media file to an image | |
with open(media_filepath, 'rb') as img_file: | |
image = Image.open(img_file) | |
# Optionally, convert the image to JPG and save in UPLOAD_FOLDER | |
converted_filename = f"image.jpg" | |
converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename) | |
image.convert('RGB').save(converted_filepath, 'JPEG') | |
return converted_filepath | |
except requests.exceptions.HTTPError as err: | |
print(f"HTTP error occurred: {err}") | |
except Exception as err: | |
print(f"An error occurred: {err}") | |
def get_weather(city): | |
city=city.strip() | |
city=city.replace(' ',"+") | |
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}') | |
soup=BeautifulSoup(r.text,'html.parser') | |
temperature=soup.find('div',attrs={'class':'BNeawe iBp4i AP7Wnd'}).text | |
degree=temperature[:-2] | |
celcius=str(round((int(degree) - 32)* 5/9,1))+temperature[-2]+'C' | |
return (celcius) | |
import scrapy | |
from scrapy.crawler import CrawlerProcess | |
import pandas as pd | |
class RatesSpider(scrapy.Spider): | |
name = "rates_spider" | |
start_urls = ['https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL'] | |
def parse(self, response): | |
# Extract the table data | |
table_rows = response.xpath('//table/tbody/tr') | |
# Initialize a list to hold the data | |
data = [] | |
for row in table_rows: | |
# Extract the commodity name and price per kg | |
commodity_name = row.xpath('td[1]//text()').get().strip() | |
price_per_kg = row.xpath('td[2]//text()').get().strip() | |
# Append the data to the list | |
data.append((commodity_name, price_per_kg)) | |
# Convert the data to a Pandas DataFrame | |
df = pd.DataFrame(data, columns=['Commodity', 'Price per kg']) | |
# Convert the DataFrame to a dictionary | |
rate_dict = df.set_index('Commodity')['Price per kg'].to_dict() | |
# Return the scraped rates | |
return rate_dict+' This is prices for 1 kg' | |
def get_rates(): | |
process = CrawlerProcess({ | |
'USER_AGENT': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0', | |
'LOG_LEVEL': 'ERROR', # Suppress logging to keep the output clean | |
}) | |
spider = RatesSpider() | |
process.crawl(spider) | |
process.start() # This will block until the spider is done | |
# Get the scraped data from the spider | |
return spider.parse(None) | |