Spaces:
Sleeping
Sleeping
from flask import Flask, request | |
from twilio.twiml.messaging_response import MessagingResponse | |
from twilio.rest import Client | |
import os | |
import requests | |
from PIL import Image | |
import shutil | |
from bs4 import BeautifulSoup | |
import requests | |
from requests.auth import HTTPBasicAuth | |
from PIL import Image | |
from io import BytesIO | |
import pandas as pd | |
from urllib.parse import urlparse | |
import os | |
from pypdf import PdfReader | |
from ai71 import AI71 | |
import uuid | |
from inference_sdk import InferenceHTTPClient | |
import base64 | |
app = Flask(__name__) | |
UPLOAD_FOLDER = '/code/uploads' | |
if not os.path.exists(UPLOAD_FOLDER): | |
os.makedirs(UPLOAD_FOLDER) | |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER | |
class ConversationBufferMemory: | |
def __init__(self, max_size): | |
self.memory = [] | |
self.max_size = max_size | |
def add_to_memory(self, interaction): | |
self.memory.append(interaction) | |
if len(self.memory) > self.max_size: | |
self.memory.pop(0) | |
def get_memory(self): | |
return self.memory | |
conversation_memory = ConversationBufferMemory(max_size=2) | |
account_sid = os.environ.get('TWILIO_ACCOUNT_SID') | |
auth_token = os.environ.get('TWILIO_AUTH_TOKEN') | |
client = Client(account_sid, auth_token) | |
from_whatsapp_number = 'whatsapp:+14155238886' | |
PROMPT_TEMPLATE = """ | |
Answer the question based only on the following context: | |
{context} | |
--- | |
Answer the question based on the above context: {question} | |
""" | |
AI71_API_KEY = os.environ.get('AI71_API_KEY') | |
def generate_response(query, chat_history): | |
response = '' | |
for chunk in AI71(AI71_API_KEY).chat.completions.create( | |
model="tiiuae/falcon-180b-chat", | |
messages=[ | |
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences. Greet the user if the user greets you."}, | |
{"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''}, | |
], | |
stream=True, | |
): | |
if chunk.choices[0].delta.content: | |
response += chunk.choices[0].delta.content | |
return response.replace("###", '').replace('\nUser:', '') | |
def predict_pest(filepath): | |
CLIENT = InferenceHTTPClient( | |
api_url="https://detect.roboflow.com", | |
api_key="oF1aC4b1FBCDtK8CoKx7" | |
) | |
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1") | |
return result['predictions'][0] | |
def predict_disease(filepath): | |
CLIENT = InferenceHTTPClient( | |
api_url="https://classify.roboflow.com", | |
api_key="oF1aC4b1FBCDtK8CoKx7" | |
) | |
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1") | |
return result['predicted_classes'][0] | |
def convert_img(url, account_sid, auth_token): | |
try: | |
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token)) | |
response.raise_for_status() | |
parsed_url = urlparse(url) | |
media_id = parsed_url.path.split('/')[-1] | |
filename = f"downloaded_media_{media_id}" | |
media_filepath = os.path.join(UPLOAD_FOLDER, filename) | |
with open(media_filepath, 'wb') as file: | |
file.write(response.content) | |
print(f"Media downloaded successfully and saved as {media_filepath}") | |
with open(media_filepath, 'rb') as img_file: | |
image = Image.open(img_file) | |
converted_filename = f"image.jpg" | |
converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename) | |
image.convert('RGB').save(converted_filepath, 'JPEG') | |
return converted_filepath | |
except requests.exceptions.HTTPError as err: | |
print(f"HTTP error occurred: {err}") | |
except Exception as err: | |
print(f"An error occurred: {err}") | |
def get_weather(city): | |
city = city.strip().replace(' ', '+') | |
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}') | |
soup = BeautifulSoup(r.text, 'html.parser') | |
temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text | |
return temperature | |
from zenrows import ZenRowsClient | |
Zenrow_api = os.environ.get('Zenrow_api') | |
zenrows_client = ZenRowsClient(Zenrow_api) | |
def get_rates(): | |
url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL" | |
response = zenrows_client.get(url) | |
if response.status_code == 200: | |
soup = BeautifulSoup(response.content, 'html.parser') | |
rows = soup.select('table tbody tr') | |
data = {} | |
for row in rows: | |
columns = row.find_all('td') | |
if len(columns) >= 2: | |
commodity = columns[0].get_text(strip=True) | |
price = columns[1].get_text(strip=True) | |
if '₹' in price: | |
data[commodity] = price | |
return str(data) + " These are the prices for 1 kg" | |
def get_news(): | |
news = [] | |
url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr" | |
response = zenrows_client.get(url) | |
if response.status_code == 200: | |
soup = BeautifulSoup(response.content, 'html.parser') | |
headlines = soup.find_all("div", class_="eachStory") | |
for story in headlines: | |
headline = story.find('h3').text.strip() | |
news.append(headline) | |
return news | |
def download_and_save_as_txt(url, account_sid, auth_token): | |
try: | |
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token)) | |
response.raise_for_status() | |
parsed_url = urlparse(url) | |
media_id = parsed_url.path.split('/')[-1] | |
filename = f"pdf_file.pdf" | |
txt_filepath = os.path.join(UPLOAD_FOLDER, filename) | |
with open(txt_filepath, 'wb') as file: | |
file.write(response.content) | |
print(f"Media downloaded successfully and saved as {txt_filepath}") | |
return txt_filepath | |
except requests.exceptions.HTTPError as err: | |
print(f"HTTP error occurred: {err}") | |
except Exception as err: | |
print(f"An error occurred: {err}") | |
def download_file(url, extension): | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
filename = f"{uuid.uuid4()}{extension}" | |
file_path = os.path.join(UPLOAD_FOLDER, filename) | |
with open(file_path, 'wb') as file: | |
file.write(response.content) | |
print(f"File downloaded and saved as {file_path}") | |
return file_path | |
except requests.exceptions.HTTPError as err: | |
print(f"HTTP error occurred: {err}") | |
except Exception as err: | |
print(f"An error occurred: {err}") | |
return None | |
def whatsapp_webhook(): | |
incoming_msg = request.values.get('Body', '').lower() | |
sender = request.values.get('From') | |
num_media = int(request.values.get('NumMedia', 0)) | |
chat_history = conversation_memory.get_memory() | |
if num_media > 0: | |
media_url = request.values.get('MediaUrl0') | |
content_type = request.values.get('MediaContentType0') | |
if content_type.startswith('image/'): | |
# Handle image processing (disease/pest detection) | |
filepath = convert_img(media_url, account_sid, auth_token) | |
response_text = handle_image(filepath) | |
else: | |
# Handle PDF processing | |
filepath = download_and_save_as_txt(media_url, account_sid, auth_token) | |
response_text = process_and_query_pdf(filepath) | |
elif ('weather' in incoming_msg.lower()) or ('climate' in incoming_msg.lower()) or ( | |
'temperature' in incoming_msg.lower()): | |
response_text = get_weather(incoming_msg.lower()) | |
elif 'bookkeeping' in incoming_msg: | |
response_text = "Please provide the details you'd like to record." | |
elif ('rates' in incoming_msg.lower()) or ('price' in incoming_msg.lower()) or ( | |
'market' in incoming_msg.lower()) or ('rate' in incoming_msg.lower()) or ('prices' in incoming_msg.lower()): | |
rates = get_rates() | |
response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history) | |
elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()): | |
news = get_news() | |
response_text = generate_response(incoming_msg + ' data is ' + str(news), chat_history) | |
else: | |
response_text = generate_response(incoming_msg, chat_history) | |
conversation_memory.add_to_memory({"user": incoming_msg, "assistant": response_text}) | |
send_message(sender, response_text) | |
return '', 204 | |
def handle_image(filepath): | |
try: | |
disease = predict_disease(filepath) | |
except: | |
disease = None | |
try: | |
pest = predict_pest(filepath) | |
except: | |
pest = None | |
if disease: | |
response_text = f"Detected disease: {disease}" | |
disease_info = generate_response(f"Provide brief information about {disease} in agriculture", "") | |
response_text += "\n" + disease_info | |
elif pest: | |
response_text = f"Detected pest: {pest}" | |
pest_info = generate_response(f"Provide brief information about {pest} in agriculture", "") | |
response_text += "\n" + pest_info | |
else: | |
response_text = "Sorry, I couldn't detect any disease or pest. Please try another image." | |
return response_text | |
def process_and_query_pdf(filepath): | |
# Read and process the PDF | |
reader = PdfReader(filepath) | |
text = '' | |
for page in reader.pages: | |
text += page.extract_text() | |
if not text: | |
return "Sorry, the PDF content could not be extracted." | |
# Generate response based on extracted PDF content | |
response_text = generate_response(f"The PDF content is {text}", "") | |
return response_text | |
def send_message(recipient, message): | |
client.messages.create( | |
body=message, | |
from_=from_whatsapp_number, | |
to=recipient | |
) | |
def send_initial_message(to_number): | |
send_message( | |
f'whatsapp:{to_number}', | |
'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.' | |
) | |
if __name__ == "__main__": | |
send_initial_message('919080522395') | |
send_initial_message('916382792828') | |
app.run(host='0.0.0.0', port=7860) |