Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,181 +1,392 @@
|
|
1 |
from flask import Flask, request
|
|
|
|
|
2 |
import os
|
3 |
-
from langchain.vectorstores import Chroma
|
4 |
-
from langchain.document_loaders import PyPDFLoader
|
5 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
import requests
|
8 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
-
# Flask app
|
12 |
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
if
|
17 |
-
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
from ai71 import AI71
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def generate_response(query, chat_history):
|
22 |
response = ''
|
23 |
-
|
24 |
-
ai71_client = AI71(api_key=AI71_API_KEY)
|
25 |
-
chat_completion = ai71_client.chat.completions.create(
|
26 |
model="tiiuae/falcon-180b-chat",
|
27 |
messages=[
|
28 |
-
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."},
|
29 |
-
{"role": "user", "content": f
|
30 |
],
|
31 |
-
stream=True
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
return response
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
def initialize_chroma():
|
50 |
try:
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
db.similarity_search_with_score("test query", k=1)
|
56 |
-
print("Chroma initialized successfully.")
|
57 |
-
except Exception as e:
|
58 |
-
print(f"Error initializing Chroma: {e}")
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
client = Client(account_sid, auth_token)
|
67 |
-
from_whatsapp_number = 'whatsapp:+14155238886'
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
with open(local_filename, 'wb') as f:
|
74 |
-
for chunk in r.iter_content(chunk_size=8192):
|
75 |
-
f.write(chunk)
|
76 |
-
return local_filename
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
|
|
|
|
80 |
|
81 |
-
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
for
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
return
|
95 |
|
96 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
try:
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
# Perform similarity search
|
105 |
-
results = db.similarity_search_with_score(query_text, k=5)
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
124 |
|
|
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
|
|
|
|
|
|
|
|
|
|
127 |
def save_pdf_and_update_database(pdf_filepath):
|
128 |
try:
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
return
|
133 |
-
|
134 |
text_splitter = RecursiveCharacterTextSplitter(
|
135 |
chunk_size=800,
|
136 |
chunk_overlap=80,
|
137 |
length_function=len,
|
138 |
is_separator_regex=False,
|
139 |
)
|
140 |
-
chunks = text_splitter.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
148 |
except Exception as e:
|
149 |
-
print(f"Error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
# Flask route to handle WhatsApp webhook
|
152 |
@app.route('/whatsapp', methods=['POST'])
|
153 |
def whatsapp_webhook():
|
154 |
incoming_msg = request.values.get('Body', '').lower()
|
155 |
sender = request.values.get('From')
|
156 |
num_media = int(request.values.get('NumMedia', 0))
|
157 |
|
158 |
-
chat_history =
|
159 |
|
160 |
if num_media > 0:
|
161 |
media_url = request.values.get('MediaUrl0')
|
162 |
content_type = request.values.get('MediaContentType0')
|
163 |
|
164 |
-
if content_type
|
165 |
-
|
166 |
-
|
167 |
-
response_text =
|
168 |
else:
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
else:
|
171 |
-
|
172 |
-
response_text = query_rag(incoming_msg, chat_history)
|
173 |
|
174 |
-
|
175 |
send_message(sender, response_text)
|
176 |
return '', 204
|
177 |
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
def send_message(to, body):
|
180 |
try:
|
181 |
message = client.messages.create(
|
@@ -186,12 +397,12 @@ def send_message(to, body):
|
|
186 |
print(f"Message sent with SID: {message.sid}")
|
187 |
except Exception as e:
|
188 |
print(f"Error sending message: {e}")
|
|
|
189 |
def send_initial_message(to_number):
|
190 |
send_message(
|
191 |
f'whatsapp:{to_number}',
|
192 |
'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.'
|
193 |
)
|
194 |
-
|
195 |
if __name__ == "__main__":
|
196 |
send_initial_message('919080522395')
|
197 |
send_initial_message('916382792828')
|
|
|
1 |
from flask import Flask, request
|
2 |
+
from twilio.twiml.messaging_response import MessagingResponse
|
3 |
+
from twilio.rest import Client
|
4 |
import os
|
|
|
|
|
|
|
|
|
5 |
import requests
|
6 |
+
from PIL import Image
|
7 |
+
import shutil
|
8 |
+
|
9 |
+
from langchain.vectorstores.chroma import Chroma
|
10 |
+
from langchain.prompts import ChatPromptTemplate
|
11 |
+
from langchain_community.llms.ollama import Ollama
|
12 |
+
from get_embedding_function import get_embedding_function
|
13 |
+
from langchain.document_loaders.pdf import PyPDFDirectoryLoader
|
14 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.schema.document import Document
|
16 |
+
import tempfile
|
17 |
+
|
18 |
+
# Create a temporary directory for Chroma if running in Hugging Face Spaces
|
19 |
+
|
20 |
|
21 |
|
|
|
22 |
app = Flask(__name__)
|
23 |
+
UPLOAD_FOLDER = '/code/uploads'
|
24 |
+
CHROMA_PATH = tempfile.mkdtemp() # Use the same folder for Chroma
|
25 |
+
if not os.path.exists(UPLOAD_FOLDER):
|
26 |
+
os.makedirs(UPLOAD_FOLDER)
|
27 |
+
|
28 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
29 |
+
|
30 |
+
class ConversationBufferMemory:
|
31 |
+
def __init__(self, max_size=6):
|
32 |
+
self.memory = []
|
33 |
+
self.max_size = max_size
|
34 |
|
35 |
+
def add_to_memory(self, interaction):
|
36 |
+
self.memory.append(interaction)
|
37 |
+
if len(self.memory) > self.max_size:
|
38 |
+
self.memory.pop(0)
|
39 |
|
40 |
+
def get_memory(self):
|
41 |
+
return self.memory
|
42 |
+
|
43 |
+
conversation_memory = ConversationBufferMemory(max_size=2)
|
44 |
+
|
45 |
+
account_sid = os.environ.get('TWILIO_ACCOUNT_SID')
|
46 |
+
auth_token = os.environ.get('TWILIO_AUTH_TOKEN')
|
47 |
+
client = Client(account_sid, auth_token)
|
48 |
+
from_whatsapp_number = 'whatsapp:+14155238886'
|
49 |
+
|
50 |
+
PROMPT_TEMPLATE = """
|
51 |
+
Answer the question based only on the following context:
|
52 |
+
{context}
|
53 |
+
---
|
54 |
+
Answer the question based on the above context: {question}
|
55 |
+
"""
|
56 |
+
|
57 |
+
from bs4 import BeautifulSoup
|
58 |
+
import requests
|
59 |
+
from requests.auth import HTTPBasicAuth
|
60 |
+
from PIL import Image
|
61 |
+
from io import BytesIO
|
62 |
+
import pandas as pd
|
63 |
+
from urllib.parse import urlparse
|
64 |
+
import os
|
65 |
+
from pypdf import PdfReader
|
66 |
from ai71 import AI71
|
67 |
+
import uuid
|
68 |
+
|
69 |
+
from inference_sdk import InferenceHTTPClient
|
70 |
+
import base64
|
71 |
+
|
72 |
+
AI71_API_KEY = os.environ.get('AI71_API_KEY')
|
73 |
|
74 |
def generate_response(query, chat_history):
|
75 |
response = ''
|
76 |
+
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
|
|
|
|
77 |
model="tiiuae/falcon-180b-chat",
|
78 |
messages=[
|
79 |
+
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences. Greet the user if the user greets you."},
|
80 |
+
{"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''},
|
81 |
],
|
82 |
+
stream=True,
|
83 |
+
):
|
84 |
+
if chunk.choices[0].delta.content:
|
85 |
+
response += chunk.choices[0].delta.content
|
86 |
+
return response.replace("###", '').replace('\nUser:', '')
|
87 |
+
|
88 |
+
def predict_pest(filepath):
|
89 |
+
CLIENT = InferenceHTTPClient(
|
90 |
+
api_url="https://detect.roboflow.com",
|
91 |
+
api_key="oF1aC4b1FBCDtK8CoKx7"
|
92 |
+
)
|
93 |
+
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1")
|
94 |
+
return result['predictions'][0]
|
95 |
|
|
|
96 |
|
97 |
+
def predict_disease(filepath):
|
98 |
+
CLIENT = InferenceHTTPClient(
|
99 |
+
api_url="https://classify.roboflow.com",
|
100 |
+
api_key="oF1aC4b1FBCDtK8CoKx7"
|
101 |
+
)
|
102 |
+
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1")
|
103 |
+
return result['predicted_classes'][0]
|
104 |
|
105 |
+
def convert_img(url, account_sid, auth_token):
|
|
|
106 |
try:
|
107 |
+
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
|
108 |
+
response.raise_for_status()
|
109 |
+
|
110 |
+
parsed_url = urlparse(url)
|
111 |
+
media_id = parsed_url.path.split('/')[-1]
|
112 |
+
filename = f"downloaded_media_{media_id}"
|
113 |
+
|
114 |
+
media_filepath = os.path.join(UPLOAD_FOLDER, filename)
|
115 |
+
with open(media_filepath, 'wb') as file:
|
116 |
+
file.write(response.content)
|
117 |
|
118 |
+
print(f"Media downloaded successfully and saved as {media_filepath}")
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
with open(media_filepath, 'rb') as img_file:
|
121 |
+
image = Image.open(img_file)
|
122 |
|
123 |
+
converted_filename = f"image.jpg"
|
124 |
+
converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename)
|
125 |
+
image.convert('RGB').save(converted_filepath, 'JPEG')
|
126 |
+
return converted_filepath
|
|
|
|
|
127 |
|
128 |
+
except requests.exceptions.HTTPError as err:
|
129 |
+
print(f"HTTP error occurred: {err}")
|
130 |
+
except Exception as err:
|
131 |
+
print(f"An error occurred: {err}")
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
def get_weather(city):
|
134 |
+
city = city.strip().replace(' ', '+')
|
135 |
+
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}')
|
136 |
+
soup = BeautifulSoup(r.text, 'html.parser')
|
137 |
+
temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text
|
138 |
+
return temperature
|
139 |
|
140 |
+
from zenrows import ZenRowsClient
|
141 |
+
Zenrow_api = os.environ.get('Zenrow_api')
|
142 |
+
zenrows_client = ZenRowsClient(Zenrow_api)
|
143 |
|
144 |
+
def get_rates():
|
145 |
+
url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL"
|
146 |
+
response = zenrows_client.get(url)
|
147 |
|
148 |
+
if response.status_code == 200:
|
149 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
150 |
+
rows = soup.select('table tbody tr')
|
151 |
+
data = {}
|
152 |
+
for row in rows:
|
153 |
+
columns = row.find_all('td')
|
154 |
+
if len(columns) >= 2:
|
155 |
+
commodity = columns[0].get_text(strip=True)
|
156 |
+
price = columns[1].get_text(strip=True)
|
157 |
+
if '₹' in price:
|
158 |
+
data[commodity] = price
|
159 |
+
return str(data) + " These are the prices for 1 kg"
|
160 |
|
161 |
+
def get_news():
|
162 |
+
news = []
|
163 |
+
url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr"
|
164 |
+
response = zenrows_client.get(url)
|
165 |
+
|
166 |
+
if response.status_code == 200:
|
167 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
168 |
+
headlines = soup.find_all("div", class_="eachStory")
|
169 |
+
for story in headlines:
|
170 |
+
headline = story.find('h3').text.strip()
|
171 |
+
news.append(headline)
|
172 |
+
return news
|
173 |
+
|
174 |
+
def download_and_save_as_txt(url, account_sid, auth_token):
|
175 |
try:
|
176 |
+
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
|
177 |
+
response.raise_for_status()
|
178 |
|
179 |
+
parsed_url = urlparse(url)
|
180 |
+
media_id = parsed_url.path.split('/')[-1]
|
181 |
+
filename = f"pdf_file.pdf"
|
|
|
|
|
182 |
|
183 |
+
txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
|
184 |
+
with open(txt_filepath, 'wb') as file:
|
185 |
+
file.write(response.content)
|
186 |
|
187 |
+
print(f"Media downloaded successfully and saved as {txt_filepath}")
|
188 |
+
return txt_filepath
|
189 |
+
|
190 |
+
except requests.exceptions.HTTPError as err:
|
191 |
+
print(f"HTTP error occurred: {err}")
|
192 |
+
except Exception as err:
|
193 |
+
print(f"An error occurred: {err}")
|
194 |
+
|
195 |
+
|
196 |
+
def initialize_chroma():
|
197 |
+
try:
|
198 |
+
# Initialize Chroma
|
199 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
|
200 |
+
# Perform an initial operation to ensure it works
|
201 |
+
db.similarity_search_with_score("test query", k=1)
|
202 |
+
print("Chroma initialized successfully.")
|
203 |
+
except Exception as e:
|
204 |
+
print(f"Error initializing Chroma: {e}")
|
205 |
+
|
206 |
+
initialize_chroma()
|
207 |
+
|
208 |
+
def query_rag(query_text: str):
|
209 |
+
embedding_function = get_embedding_function()
|
210 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
211 |
+
print(query_text)
|
212 |
+
# Check if the query is related to a PDF
|
213 |
+
if "from pdf" in query_text.lower() or "in pdf" in query_text.lower():
|
214 |
+
# Provide some context about handling PDFs
|
215 |
+
response_text = "I see you're asking about a PDF-related query. Let me check the context from the PDF."
|
216 |
+
else:
|
217 |
+
# Regular RAG functionality
|
218 |
+
response_text = "Your query is not related to PDFs. Please make sure your question is clear."
|
219 |
+
|
220 |
+
results = db.similarity_search_with_score(query_text, k=5)
|
221 |
+
|
222 |
+
if not results:
|
223 |
+
response_text = "Sorry, I couldn't find any relevant information."
|
224 |
+
else:
|
225 |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
226 |
+
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
|
227 |
+
prompt = prompt_template.format(context=context_text, question=query_text)
|
228 |
|
229 |
+
response = ''
|
230 |
+
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
231 |
+
model="tiiuae/falcon-180b-chat",
|
232 |
+
messages=[
|
233 |
+
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."},
|
234 |
+
{"role": "user", "content": f'''Answer the following query based on the given context: {prompt}'''},
|
235 |
+
],
|
236 |
+
stream=True,
|
237 |
+
):
|
238 |
+
if chunk.choices[0].delta.content:
|
239 |
+
response += chunk.choices[0].delta.content
|
240 |
|
241 |
+
response_text = response.replace("###", '').replace('\nUser:', '')
|
242 |
|
243 |
+
return response_text
|
244 |
+
|
245 |
+
def download_file(url, extension):
|
246 |
+
try:
|
247 |
+
response = requests.get(url)
|
248 |
+
response.raise_for_status()
|
249 |
+
filename = f"{uuid.uuid4()}{extension}"
|
250 |
+
file_path = os.path.join(UPLOAD_FOLDER, filename)
|
251 |
+
|
252 |
+
with open(file_path, 'wb') as file:
|
253 |
+
file.write(response.content)
|
254 |
+
|
255 |
+
print(f"File downloaded and saved as {file_path}")
|
256 |
+
return file_path
|
257 |
|
258 |
+
except requests.exceptions.HTTPError as err:
|
259 |
+
print(f"HTTP error occurred: {err}")
|
260 |
+
except Exception as err:
|
261 |
+
print(f"An error occurred: {err}")
|
262 |
+
return None
|
263 |
def save_pdf_and_update_database(pdf_filepath):
|
264 |
try:
|
265 |
+
document_loader = PyPDFDirectoryLoader(UPLOAD_FOLDER)
|
266 |
+
documents = document_loader.load()
|
267 |
+
|
|
|
|
|
268 |
text_splitter = RecursiveCharacterTextSplitter(
|
269 |
chunk_size=800,
|
270 |
chunk_overlap=80,
|
271 |
length_function=len,
|
272 |
is_separator_regex=False,
|
273 |
)
|
274 |
+
chunks = text_splitter.split_documents(documents)
|
275 |
+
|
276 |
+
add_to_chroma(chunks)
|
277 |
+
print(f"PDF processed and data updated in Chroma.")
|
278 |
+
except Exception as e:
|
279 |
+
print(f"Error in processing PDF: {e}")
|
280 |
+
|
281 |
+
def load_documents():
|
282 |
+
document_loader = PyPDFDirectoryLoader(DATA_PATH)
|
283 |
+
return document_loader.load()
|
284 |
|
285 |
+
def add_to_chroma(chunks: list[Document]):
|
286 |
+
try:
|
287 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function())
|
288 |
+
chunks_with_ids = calculate_chunk_ids(chunks)
|
289 |
+
existing_items = db.get(include=[])
|
290 |
+
existing_ids = set(existing_items["ids"])
|
291 |
+
|
292 |
+
new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids]
|
293 |
|
294 |
+
if new_chunks:
|
295 |
+
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
|
296 |
+
db.add_documents(new_chunks, ids=new_chunk_ids)
|
297 |
+
db.persist()
|
298 |
+
print(f"Chunks added to Chroma.")
|
299 |
except Exception as e:
|
300 |
+
print(f"Error adding chunks to Chroma: {e}")
|
301 |
+
def calculate_chunk_ids(chunks):
|
302 |
+
last_page_id = None
|
303 |
+
current_chunk_index = 0
|
304 |
+
|
305 |
+
for chunk in chunks:
|
306 |
+
source = chunk.metadata.get("source")
|
307 |
+
page = chunk.metadata.get("page")
|
308 |
+
current_page_id = f"{source}:{page}"
|
309 |
+
|
310 |
+
if current_page_id == last_page_id:
|
311 |
+
current_chunk_index += 1
|
312 |
+
else:
|
313 |
+
current_chunk_index = 0
|
314 |
+
|
315 |
+
last_page_id = current_page_id
|
316 |
+
chunk_id = f"{current_page_id}:{current_chunk_index}"
|
317 |
+
chunk.metadata["id"] = chunk_id
|
318 |
+
|
319 |
+
return chunks
|
320 |
+
|
321 |
|
|
|
322 |
@app.route('/whatsapp', methods=['POST'])
|
323 |
def whatsapp_webhook():
|
324 |
incoming_msg = request.values.get('Body', '').lower()
|
325 |
sender = request.values.get('From')
|
326 |
num_media = int(request.values.get('NumMedia', 0))
|
327 |
|
328 |
+
chat_history = conversation_memory.get_memory()
|
329 |
|
330 |
if num_media > 0:
|
331 |
media_url = request.values.get('MediaUrl0')
|
332 |
content_type = request.values.get('MediaContentType0')
|
333 |
|
334 |
+
if content_type.startswith('image/'):
|
335 |
+
# Handle image processing (disease/pest detection)
|
336 |
+
filepath = convert_img(media_url, account_sid, auth_token)
|
337 |
+
response_text = handle_image(filepath)
|
338 |
else:
|
339 |
+
# Handle PDF processing
|
340 |
+
filepath = download_and_save_as_txt(media_url, account_sid, auth_token)
|
341 |
+
response_text = process_and_query_pdf(filepath)
|
342 |
+
elif ('weather' in incoming_msg.lower()) or ('climate' in incoming_msg.lower()) or (
|
343 |
+
'temperature' in incoming_msg.lower()):
|
344 |
+
response_text = get_weather(incoming_msg.lower())
|
345 |
+
elif 'bookkeeping' in incoming_msg:
|
346 |
+
response_text = "Please provide the details you'd like to record."
|
347 |
+
elif ('rates' in incoming_msg.lower()) or ('price' in incoming_msg.lower()) or (
|
348 |
+
'market' in incoming_msg.lower()) or ('rate' in incoming_msg.lower()) or ('prices' in incoming_msg.lower()):
|
349 |
+
rates = get_rates()
|
350 |
+
response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history)
|
351 |
+
elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()):
|
352 |
+
news = get_news()
|
353 |
+
response_text = generate_response(incoming_msg + ' data is ' + str(news), chat_history)
|
354 |
else:
|
355 |
+
response_text = query_rag(incoming_msg)
|
|
|
356 |
|
357 |
+
conversation_memory.add_to_memory({"user": incoming_msg, "assistant": response_text})
|
358 |
send_message(sender, response_text)
|
359 |
return '', 204
|
360 |
|
361 |
+
def handle_image(filepath):
|
362 |
+
try:
|
363 |
+
disease = predict_disease(filepath)
|
364 |
+
except:
|
365 |
+
disease = None
|
366 |
+
try:
|
367 |
+
pest = predict_pest(filepath)
|
368 |
+
except:
|
369 |
+
pest = None
|
370 |
+
|
371 |
+
if disease:
|
372 |
+
response_text = f"Detected disease: {disease}"
|
373 |
+
disease_info = generate_response(f"Provide brief information about {disease} in plants", chat_history)
|
374 |
+
response_text += f"\n\nAdditional information: {disease_info}"
|
375 |
+
elif pest:
|
376 |
+
response_text = f"Detected pest: {pest}"
|
377 |
+
pest_info = generate_response(f"Provide brief information about {pest} in agriculture", chat_history)
|
378 |
+
response_text += f"\n\nAdditional information: {pest_info}"
|
379 |
+
else:
|
380 |
+
response_text = "Please upload another image with good quality."
|
381 |
+
|
382 |
+
return response_text
|
383 |
+
|
384 |
+
def process_and_query_pdf(filepath):
|
385 |
+
# Assuming the PDF processing and embedding are handled here.
|
386 |
+
add_to_chroma(load_documents())
|
387 |
+
return query_rag("from pdf") # Replace with a more specific query if needed
|
388 |
+
|
389 |
+
|
390 |
def send_message(to, body):
|
391 |
try:
|
392 |
message = client.messages.create(
|
|
|
397 |
print(f"Message sent with SID: {message.sid}")
|
398 |
except Exception as e:
|
399 |
print(f"Error sending message: {e}")
|
400 |
+
|
401 |
def send_initial_message(to_number):
|
402 |
send_message(
|
403 |
f'whatsapp:{to_number}',
|
404 |
'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.'
|
405 |
)
|
|
|
406 |
if __name__ == "__main__":
|
407 |
send_initial_message('919080522395')
|
408 |
send_initial_message('916382792828')
|