Spaces:
Sleeping
Sleeping
Neurolingua
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,37 @@
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
3 |
CHROMA_PATH = '/code/chroma_db'
|
4 |
if not os.path.exists(CHROMA_PATH):
|
5 |
os.makedirs(CHROMA_PATH)
|
6 |
-
from langchain.vectorstores.chroma import Chroma
|
7 |
-
from langchain.document_loaders import PyPDFLoader
|
8 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def save_pdf_and_update_database(pdf_filepath):
|
13 |
try:
|
14 |
-
# Load the PDF
|
15 |
document_loader = PyPDFLoader(pdf_filepath)
|
16 |
documents = document_loader.load()
|
17 |
|
18 |
-
# Split the documents into manageable chunks
|
19 |
text_splitter = RecursiveCharacterTextSplitter(
|
20 |
chunk_size=800,
|
21 |
chunk_overlap=80,
|
@@ -24,19 +40,16 @@ def save_pdf_and_update_database(pdf_filepath):
|
|
24 |
)
|
25 |
chunks = text_splitter.split_documents(documents)
|
26 |
|
27 |
-
# Initialize Chroma with an embedding function
|
28 |
embedding_function = HuggingFaceEmbeddings()
|
29 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
30 |
|
31 |
-
# Add chunks to ChromaDB
|
32 |
db.add_documents(chunks)
|
33 |
db.persist()
|
34 |
print("PDF processed and data updated in Chroma.")
|
35 |
except Exception as e:
|
36 |
print(f"Error processing PDF: {e}")
|
37 |
|
38 |
-
|
39 |
-
|
40 |
def generate_response(query, chat_history):
|
41 |
response = ''
|
42 |
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
@@ -51,10 +64,10 @@ def generate_response(query, chat_history):
|
|
51 |
response += chunk.choices[0].delta.content
|
52 |
return response.replace("###", '').replace('\nUser:', '')
|
53 |
|
|
|
54 |
def query_rag(query_text: str, chat_history):
|
55 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=HuggingFaceEmbeddings())
|
56 |
|
57 |
-
# Perform a similarity search in ChromaDB
|
58 |
results = db.similarity_search_with_score(query_text, k=5)
|
59 |
|
60 |
if not results:
|
@@ -62,41 +75,53 @@ def query_rag(query_text: str, chat_history):
|
|
62 |
|
63 |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
64 |
|
65 |
-
# Generate the response using the Falcon model
|
66 |
prompt = f"Context:\n{context_text}\n\nQuestion:\n{query_text}"
|
67 |
response = generate_response(prompt, chat_history)
|
68 |
|
69 |
return response
|
70 |
|
71 |
-
|
72 |
@app.route('/whatsapp', methods=['POST'])
|
73 |
def whatsapp_webhook():
|
74 |
incoming_msg = request.values.get('Body', '').lower()
|
75 |
sender = request.values.get('From')
|
76 |
num_media = int(request.values.get('NumMedia', 0))
|
77 |
|
78 |
-
chat_history =
|
79 |
|
80 |
if num_media > 0:
|
81 |
media_url = request.values.get('MediaUrl0')
|
82 |
content_type = request.values.get('MediaContentType0')
|
83 |
|
84 |
if content_type == 'application/pdf':
|
85 |
-
# Handle PDF processing
|
86 |
filepath = download_file(media_url, ".pdf")
|
87 |
save_pdf_and_update_database(filepath)
|
88 |
response_text = "PDF has been processed. You can now ask questions related to its content."
|
89 |
else:
|
90 |
response_text = "Unsupported file type. Please upload a PDF document."
|
91 |
else:
|
92 |
-
# Handle queries
|
93 |
response_text = query_rag(incoming_msg, chat_history)
|
94 |
|
95 |
-
|
96 |
send_message(sender, response_text)
|
97 |
return '', 204
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
if __name__ == "__main__":
|
101 |
send_initial_message('919080522395')
|
102 |
send_initial_message('916382792828')
|
|
|
1 |
+
from flask import Flask, request
|
2 |
import os
|
3 |
+
from langchain.vectorstores import Chroma
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
import requests
|
8 |
|
9 |
+
# Flask app
|
10 |
+
app = Flask(__name__)
|
11 |
+
|
12 |
+
# ChromaDB path
|
13 |
CHROMA_PATH = '/code/chroma_db'
|
14 |
if not os.path.exists(CHROMA_PATH):
|
15 |
os.makedirs(CHROMA_PATH)
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Set AI71 API key
|
18 |
+
AI71_API_KEY = os.environ.get('AI71_API_KEY')
|
19 |
+
|
20 |
+
# Download file utility
|
21 |
+
def download_file(url, ext):
|
22 |
+
local_filename = f'/code/uploads/uploaded_file{ext}'
|
23 |
+
with requests.get(url, stream=True) as r:
|
24 |
+
with open(local_filename, 'wb') as f:
|
25 |
+
for chunk in r.iter_content(chunk_size=8192):
|
26 |
+
f.write(chunk)
|
27 |
+
return local_filename
|
28 |
+
|
29 |
+
# Process PDF and save to ChromaDB
|
30 |
def save_pdf_and_update_database(pdf_filepath):
|
31 |
try:
|
|
|
32 |
document_loader = PyPDFLoader(pdf_filepath)
|
33 |
documents = document_loader.load()
|
34 |
|
|
|
35 |
text_splitter = RecursiveCharacterTextSplitter(
|
36 |
chunk_size=800,
|
37 |
chunk_overlap=80,
|
|
|
40 |
)
|
41 |
chunks = text_splitter.split_documents(documents)
|
42 |
|
|
|
43 |
embedding_function = HuggingFaceEmbeddings()
|
44 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
45 |
|
|
|
46 |
db.add_documents(chunks)
|
47 |
db.persist()
|
48 |
print("PDF processed and data updated in Chroma.")
|
49 |
except Exception as e:
|
50 |
print(f"Error processing PDF: {e}")
|
51 |
|
52 |
+
# Generate response using Falcon model
|
|
|
53 |
def generate_response(query, chat_history):
|
54 |
response = ''
|
55 |
for chunk in AI71(AI71_API_KEY).chat.completions.create(
|
|
|
64 |
response += chunk.choices[0].delta.content
|
65 |
return response.replace("###", '').replace('\nUser:', '')
|
66 |
|
67 |
+
# Query the RAG system
|
68 |
def query_rag(query_text: str, chat_history):
|
69 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=HuggingFaceEmbeddings())
|
70 |
|
|
|
71 |
results = db.similarity_search_with_score(query_text, k=5)
|
72 |
|
73 |
if not results:
|
|
|
75 |
|
76 |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
77 |
|
|
|
78 |
prompt = f"Context:\n{context_text}\n\nQuestion:\n{query_text}"
|
79 |
response = generate_response(prompt, chat_history)
|
80 |
|
81 |
return response
|
82 |
|
83 |
+
# Flask route to handle WhatsApp webhook
|
84 |
@app.route('/whatsapp', methods=['POST'])
|
85 |
def whatsapp_webhook():
|
86 |
incoming_msg = request.values.get('Body', '').lower()
|
87 |
sender = request.values.get('From')
|
88 |
num_media = int(request.values.get('NumMedia', 0))
|
89 |
|
90 |
+
chat_history = [] # You need to handle chat history appropriately
|
91 |
|
92 |
if num_media > 0:
|
93 |
media_url = request.values.get('MediaUrl0')
|
94 |
content_type = request.values.get('MediaContentType0')
|
95 |
|
96 |
if content_type == 'application/pdf':
|
|
|
97 |
filepath = download_file(media_url, ".pdf")
|
98 |
save_pdf_and_update_database(filepath)
|
99 |
response_text = "PDF has been processed. You can now ask questions related to its content."
|
100 |
else:
|
101 |
response_text = "Unsupported file type. Please upload a PDF document."
|
102 |
else:
|
|
|
103 |
response_text = query_rag(incoming_msg, chat_history)
|
104 |
|
105 |
+
# Assuming you have a function to send a message back to the user
|
106 |
send_message(sender, response_text)
|
107 |
return '', 204
|
108 |
+
|
109 |
+
def send_message(to, body):
|
110 |
+
try:
|
111 |
+
message = client.messages.create(
|
112 |
+
from_=from_whatsapp_number,
|
113 |
+
body=body,
|
114 |
+
to=to
|
115 |
+
)
|
116 |
+
print(f"Message sent with SID: {message.sid}")
|
117 |
+
except Exception as e:
|
118 |
+
print(f"Error sending message: {e}")
|
119 |
+
|
120 |
+
def send_initial_message(to_number):
|
121 |
+
send_message(
|
122 |
+
f'whatsapp:{to_number}',
|
123 |
+
'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.'
|
124 |
+
)
|
125 |
if __name__ == "__main__":
|
126 |
send_initial_message('919080522395')
|
127 |
send_initial_message('916382792828')
|