Neurolingua commited on
Commit
dd1112c
1 Parent(s): d27eb97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -28,32 +28,31 @@ def classify_pest(image_path):
28
  def classify_disease(image_path):
29
  # Implement disease classification model here
30
  return f"Detected Disease: [Disease Name] for image at {image_path}"
31
-
32
  @app.route('/whatsapp', methods=['POST'])
33
  def whatsapp_webhook():
34
  incoming_msg = request.values.get('Body', '').lower()
35
  sender = request.values.get('From')
36
 
37
- # Check if an image is attached
38
  num_media = int(request.values.get('NumMedia', 0))
39
 
40
  if num_media > 0:
41
- media_sid = request.values.get('MediaSid0')
42
  content_type = request.values.get('MediaContentType0')
43
 
44
  if content_type.startswith('image/'):
45
  try:
46
- # Retrieve the media using Twilio client
47
- media = client.messages.media(request.values.get('MessageSid')).list()[0]
48
-
49
  # Generate a unique filename
50
  filename = f"{uuid.uuid4()}.jpg"
51
  filepath = os.path.join(UPLOAD_FOLDER, filename)
52
 
53
- # Download and save the image
 
 
 
54
  with open(filepath, 'wb') as f:
55
- f.write(media.fetch())
56
 
 
57
  if 'pest' in incoming_msg:
58
  response_text = classify_pest(filepath)
59
  elif 'disease' in incoming_msg:
 
28
  def classify_disease(image_path):
29
  # Implement disease classification model here
30
  return f"Detected Disease: [Disease Name] for image at {image_path}"
 
31
  @app.route('/whatsapp', methods=['POST'])
32
  def whatsapp_webhook():
33
  incoming_msg = request.values.get('Body', '').lower()
34
  sender = request.values.get('From')
35
 
 
36
  num_media = int(request.values.get('NumMedia', 0))
37
 
38
  if num_media > 0:
39
+ media_url = request.values.get('MediaUrl0')
40
  content_type = request.values.get('MediaContentType0')
41
 
42
  if content_type.startswith('image/'):
43
  try:
 
 
 
44
  # Generate a unique filename
45
  filename = f"{uuid.uuid4()}.jpg"
46
  filepath = os.path.join(UPLOAD_FOLDER, filename)
47
 
48
+ # Download and save the image using the media URL
49
+ response = requests.get(media_url)
50
+ image_data = response.content
51
+
52
  with open(filepath, 'wb') as f:
53
+ f.write(image_data)
54
 
55
+ # Call the appropriate classification function
56
  if 'pest' in incoming_msg:
57
  response_text = classify_pest(filepath)
58
  elif 'disease' in incoming_msg: