from flask import Flask, request from twilio.twiml.messaging_response import MessagingResponse from twilio.rest import Client import os import requests from PIL import Image import shutil from langchain.vectorstores.chroma import Chroma from langchain.prompts import ChatPromptTemplate from langchain_community.llms.ollama import Ollama from get_embedding_function import get_embedding_function from langchain.document_loaders.pdf import PyPDFDirectoryLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.schema.document import Document app = Flask(__name__) UPLOAD_FOLDER = '/code/uploads' CHROMA_PATH = UPLOAD_FOLDER # Use the same folder for Chroma if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER class ConversationBufferMemory: def __init__(self, max_size=6): self.memory = [] self.max_size = max_size def add_to_memory(self, interaction): self.memory.append(interaction) if len(self.memory) > self.max_size: self.memory.pop(0) def get_memory(self): return self.memory conversation_memory = ConversationBufferMemory(max_size=2) account_sid = os.environ.get('TWILIO_ACCOUNT_SID') auth_token = os.environ.get('TWILIO_AUTH_TOKEN') client = Client(account_sid, auth_token) from_whatsapp_number = 'whatsapp:+14155238886' PROMPT_TEMPLATE = """ Answer the question based only on the following context: {context} --- Answer the question based on the above context: {question} """ from bs4 import BeautifulSoup import requests from requests.auth import HTTPBasicAuth from PIL import Image from io import BytesIO import pandas as pd from urllib.parse import urlparse import os from pypdf import PdfReader from ai71 import AI71 import uuid from inference_sdk import InferenceHTTPClient import base64 AI71_API_KEY = os.environ.get('AI71_API_KEY') def generate_response(query, chat_history): response = '' for chunk in AI71(AI71_API_KEY).chat.completions.create( model="tiiuae/falcon-180b-chat", messages=[ {"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences. Greet the user if the user greets you."}, {"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''}, ], stream=True, ): if chunk.choices[0].delta.content: response += chunk.choices[0].delta.content return response.replace("###", '').replace('\nUser:', '') def predict_pest(filepath): CLIENT = InferenceHTTPClient( api_url="https://detect.roboflow.com", api_key="oF1aC4b1FBCDtK8CoKx7" ) result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1") return result['predictions'][0] def predict_disease(filepath): CLIENT = InferenceHTTPClient( api_url="https://classify.roboflow.com", api_key="oF1aC4b1FBCDtK8CoKx7" ) result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1") return result['predicted_classes'][0] def convert_img(url, account_sid, auth_token): try: response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token)) response.raise_for_status() parsed_url = urlparse(url) media_id = parsed_url.path.split('/')[-1] filename = f"downloaded_media_{media_id}" media_filepath = os.path.join(UPLOAD_FOLDER, filename) with open(media_filepath, 'wb') as file: file.write(response.content) print(f"Media downloaded successfully and saved as {media_filepath}") with open(media_filepath, 'rb') as img_file: image = Image.open(img_file) converted_filename = f"image.jpg" converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename) image.convert('RGB').save(converted_filepath, 'JPEG') return converted_filepath except requests.exceptions.HTTPError as err: print(f"HTTP error occurred: {err}") except Exception as err: print(f"An error occurred: {err}") def get_weather(city): city = city.strip().replace(' ', '+') r = requests.get(f'https://www.google.com/search?q=weather+in+{city}') soup = BeautifulSoup(r.text, 'html.parser') temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text return temperature from zenrows import ZenRowsClient Zenrow_api = os.environ.get('Zenrow_api') zenrows_client = ZenRowsClient(Zenrow_api) def get_rates(): url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL" response = zenrows_client.get(url) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') rows = soup.select('table tbody tr') data = {} for row in rows: columns = row.find_all('td') if len(columns) >= 2: commodity = columns[0].get_text(strip=True) price = columns[1].get_text(strip=True) if '₹' in price: data[commodity] = price return str(data) + " These are the prices for 1 kg" def get_news(): news = [] url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr" response = zenrows_client.get(url) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') headlines = soup.find_all("div", class_="eachStory") for story in headlines: headline = story.find('h3').text.strip() news.append(headline) return news def download_and_save_as_txt(url, account_sid, auth_token): try: response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token)) response.raise_for_status() parsed_url = urlparse(url) media_id = parsed_url.path.split('/')[-1] filename = f"pdf_file.pdf" txt_filepath = os.path.join(UPLOAD_FOLDER, filename) with open(txt_filepath, 'wb') as file: file.write(response.content) print(f"Media downloaded successfully and saved as {txt_filepath}") return txt_filepath except requests.exceptions.HTTPError as err: print(f"HTTP error occurred: {err}") except Exception as err: print(f"An error occurred: {err}") def query_rag(query_text: str): embedding_function = get_embedding_function() db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) results = db.similarity_search_with_score(query_text, k=5) context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results]) prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) prompt = prompt_template.format(context=context_text, question=query_text) response = '' for chunk in AI71(AI71_API_KEY).chat.completions.create( model="tiiuae/falcon-180b-chat", messages=[ {"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences."}, {"role": "user", "content": f'''Answer the following query based on the given context: {prompt}'''}, ], stream=True, ): if chunk.choices[0].delta.content: response += chunk.choices[0].delta.content return response.replace("###", '').replace('\nUser:', '') def download_file(url, extension): try: response = requests.get(url) response.raise_for_status() filename = f"{uuid.uuid4()}{extension}" file_path = os.path.join(UPLOAD_FOLDER, filename) with open(file_path, 'wb') as file: file.write(response.content) print(f"File downloaded and saved as {file_path}") return file_path except requests.exceptions.HTTPError as err: print(f"HTTP error occurred: {err}") except Exception as err: print(f"An error occurred: {err}") return None def save_pdf_and_update_database(pdf_filepath): try: document_loader = PyPDFDirectoryLoader(UPLOAD_FOLDER) documents = document_loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=800, chunk_overlap=80, length_function=len, is_separator_regex=False, ) chunks = text_splitter.split_documents(documents) add_to_chroma(chunks) print(f"PDF processed and data updated in Chroma.") except Exception as e: print(f"Error in processing PDF: {e}") def add_to_chroma(chunks: list[Document]): try: db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function()) chunks_with_ids = calculate_chunk_ids(chunks) existing_items = db.get(include=[]) existing_ids = set(existing_items["ids"]) new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids] if new_chunks: new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks] db.add_documents(new_chunks, ids=new_chunk_ids) db.persist() print(f"Chunks added to Chroma.") except Exception as e: print(f"Error adding chunks to Chroma: {e}") def calculate_chunk_ids(chunks): last_page_id = None current_chunk_index = 0 for chunk in chunks: source = chunk.metadata.get("source") page = chunk.metadata.get("page") current_page_id = f"{source}:{page}" if current_page_id == last_page_id: current_chunk_index += 1 else: current_chunk_index = 0 last_page_id = current_page_id chunk_id = f"{current_page_id}:{current_chunk_index}" chunk.metadata["id"] = chunk_id return chunks @app.route('/whatsapp', methods=['POST']) def whatsapp_webhook(): incoming_msg = request.values.get('Body', '').lower() sender = request.values.get('From') num_media = int(request.values.get('NumMedia', 0)) chat_history = conversation_memory.get_memory() if num_media > 0: media_url = request.values.get('MediaUrl0') response_text = media_url content_type = request.values.get('MediaContentType0') if content_type.startswith('image/'): filepath = convert_img(media_url, account_sid, auth_token) try: disease = predict_disease(filepath) except: disease = None try: pest = predict_pest(filepath) except: pest = None if disease: response_text = f"Detected disease: {disease}" disease_info = generate_response(f"Provide brief information about {disease} in plants", chat_history) response_text += f"\n\nAdditional information: {disease_info}" elif pest: response_text = f"Detected pest: {pest}" pest_info = generate_response(f"Provide brief information about {pest} in agriculture", chat_history) response_text += f"\n\nAdditional information: {pest_info}" else: response_text = "Please upload another image with good quality." else: filepath = download_and_save_as_txt(media_url, account_sid, auth_token) response_text = query_rag(filepath) elif ('weather' in incoming_msg.lower()) or ('climate' in incoming_msg.lower()) or ( 'temperature' in incoming_msg.lower()): response_text = get_weather(incoming_msg.lower()) elif 'bookkeeping' in incoming_msg: response_text = "Please provide the details you'd like to record." elif ('rates' in incoming_msg.lower()) or ('price' in incoming_msg.lower()) or ( 'market' in incoming_msg.lower()) or ('rate' in incoming_msg.lower()) or ('prices' in incoming_msg.lower()): rates = get_rates() response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history) elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()): news = get_news() response_text = generate_response(incoming_msg + ' data is ' + str(news), chat_history) else: # Check if the query is related to a PDF document if 'from pdf' in incoming_msg or 'in pdf' in incoming_msg: response_text = query_rag(incoming_msg) else: response_text = generate_response(incoming_msg, chat_history) conversation_memory.add_to_memory({"user": incoming_msg, "assistant": response_text}) send_message(sender, response_text) return '', 204 def send_message(to, body): try: message = client.messages.create( from_=from_whatsapp_number, body=body, to=to ) print(f"Message sent with SID: {message.sid}") except Exception as e: print(f"Error sending message: {e}") def send_initial_message(to_number): send_message( f'whatsapp:{to_number}', 'Welcome to the Agri AI Chatbot! How can I assist you today? You can send an image with "pest" or "disease" to classify it.' ) if __name__ == "__main__": send_initial_message('919080522395') send_initial_message('916382792828') app.run(host='0.0.0.0', port=7860)