Update utils.py
Browse files
utils.py
CHANGED
@@ -67,7 +67,7 @@ def make_html_source(paragraph, meta_doc, i):
|
|
67 |
return f"""
|
68 |
<div class="card" id="document-{i}">
|
69 |
<div class="card-content">
|
70 |
-
<h2>
|
71 |
<p>{content}</p>
|
72 |
</div>
|
73 |
<div class="card-footer">
|
@@ -79,6 +79,26 @@ def make_html_source(paragraph, meta_doc, i):
|
|
79 |
</div>
|
80 |
"""
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
def preprocess_message(text: str, docs_url: dict) -> str:
|
84 |
return re.sub(
|
@@ -108,7 +128,6 @@ def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
|
108 |
def chat(
|
109 |
query: str,
|
110 |
history: list,
|
111 |
-
query_mode : str = 'HYDE',
|
112 |
threshold: float = CFG_APP.THRESHOLD,
|
113 |
k_total: int = CFG_APP.K_TOTAL,
|
114 |
) -> tuple:
|
@@ -121,25 +140,16 @@ def chat(
|
|
121 |
Yields:
|
122 |
tuple: chat gradio format, chat openai format, sources used.
|
123 |
"""
|
124 |
-
if query_mode == 'Reformulation':
|
125 |
-
|
126 |
-
reformulated_query = openai.ChatCompletion.create(
|
127 |
-
model=CFG_APP.MODEL_NAME,
|
128 |
-
messages=get_reformulation_prompt(parse_glossary(query)),
|
129 |
-
temperature=0,
|
130 |
-
max_tokens=CFG_APP.MAX_TOKENS_REF_QUESTION,
|
131 |
-
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
max_tokens=CFG_APP.MAX_TOKENS_REF_QUESTION,
|
140 |
-
)
|
141 |
|
142 |
reformulated_query = reformulated_query["choices"][0]["message"]["content"]
|
|
|
143 |
if len(reformulated_query.split("\n")) == 2:
|
144 |
reformulated_query, language = reformulated_query.split("\n")
|
145 |
language = language.split(":")[1].strip()
|
@@ -152,21 +162,21 @@ def chat(
|
|
152 |
k_total=k_total,
|
153 |
threshold=threshold,
|
154 |
)
|
|
|
155 |
if CFG_APP.DEBUG == True:
|
156 |
print("Scores : \n", scores)
|
157 |
|
158 |
messages = history + [{"role": "user", "content": query}]
|
159 |
|
160 |
-
if query_mode is None or query_mode == 'HYDE' :
|
161 |
-
reformulated_query = reformulated_query.split("?")[0] + '?'
|
162 |
-
|
163 |
docs_url = defaultdict(str)
|
164 |
|
165 |
if len(sources) > 0:
|
166 |
docs_string = []
|
167 |
docs_html = []
|
|
|
168 |
|
169 |
num_tokens = num_tokens_from_string(CFG_APP.SOURCES_PROMPT, CFG_APP.MODEL_NAME)
|
|
|
170 |
|
171 |
for i, data in enumerate(sources, 1):
|
172 |
meta_doc = retrieve_doc_metadata(doc_metadata, data["meta"]["document_id"])
|
@@ -176,17 +186,26 @@ def chat(
|
|
176 |
break
|
177 |
num_tokens += num_tokens_doc
|
178 |
docs_string.append(doc_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
docs_html.append(make_html_source(data, meta_doc, i))
|
180 |
|
181 |
url_doc = f'<a href="{meta_doc["url"]}#page={data["meta"]["page_number"]}" target="_blank" class="pdf-link">'
|
182 |
docs_url[i] = url_doc
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
)
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
messages.append(
|
191 |
{
|
192 |
"role": "system",
|
@@ -219,7 +238,7 @@ def chat(
|
|
219 |
{"role": "user", "content": reformulated_query},
|
220 |
{
|
221 |
"role": "system",
|
222 |
-
"content": f"{CFG_APP.SOURCES_PROMPT}\n\
|
223 |
},
|
224 |
],
|
225 |
temperature=0, # deterministic
|
@@ -239,8 +258,124 @@ def chat(
|
|
239 |
yield gradio_format, messages, docs_html
|
240 |
|
241 |
else:
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
return f"""
|
68 |
<div class="card" id="document-{i}">
|
69 |
<div class="card-content">
|
70 |
+
<h2>Excerpts {i} - Document {meta_doc['num_doc']} - Page {meta_paragraph['page_number']}</h2>
|
71 |
<p>{content}</p>
|
72 |
</div>
|
73 |
<div class="card-footer">
|
|
|
79 |
</div>
|
80 |
"""
|
81 |
|
82 |
+
def make_citations_source(citation_dic, query, Hyde: False):
|
83 |
+
citation_list = [f'Doc {values[0]} - {keys} (excerpts {values[1]})' for keys, values in citation_dic.items()]
|
84 |
+
|
85 |
+
html_output = '<div class="source">\n'
|
86 |
+
html_output += ' <div class="title">Sources</div>\n'
|
87 |
+
if Hyde :
|
88 |
+
html_output += f' <div>Query used for retrieval (with the HyDE technique after no response): {query}</div>\n'
|
89 |
+
else :
|
90 |
+
html_output += f' <div>Query used for retrieval: {query}</div>\n'
|
91 |
+
html_output += ' <br>\n'
|
92 |
+
html_output += ' <ul>\n'
|
93 |
+
|
94 |
+
for row in citation_list :
|
95 |
+
html_output += f'<li>{row}</li>'
|
96 |
+
|
97 |
+
html_output += ' </ul>\n'
|
98 |
+
html_output += '</div>\n'
|
99 |
+
|
100 |
+
return html_output
|
101 |
+
|
102 |
|
103 |
def preprocess_message(text: str, docs_url: dict) -> str:
|
104 |
return re.sub(
|
|
|
128 |
def chat(
|
129 |
query: str,
|
130 |
history: list,
|
|
|
131 |
threshold: float = CFG_APP.THRESHOLD,
|
132 |
k_total: int = CFG_APP.K_TOTAL,
|
133 |
) -> tuple:
|
|
|
140 |
Yields:
|
141 |
tuple: chat gradio format, chat openai format, sources used.
|
142 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
reformulated_query = openai.ChatCompletion.create(
|
145 |
+
model=CFG_APP.MODEL_NAME,
|
146 |
+
messages=get_reformulation_prompt(parse_glossary(query)),
|
147 |
+
temperature=0,
|
148 |
+
max_tokens=CFG_APP.MAX_TOKENS_REF_QUESTION,
|
149 |
+
)
|
|
|
|
|
150 |
|
151 |
reformulated_query = reformulated_query["choices"][0]["message"]["content"]
|
152 |
+
|
153 |
if len(reformulated_query.split("\n")) == 2:
|
154 |
reformulated_query, language = reformulated_query.split("\n")
|
155 |
language = language.split(":")[1].strip()
|
|
|
162 |
k_total=k_total,
|
163 |
threshold=threshold,
|
164 |
)
|
165 |
+
|
166 |
if CFG_APP.DEBUG == True:
|
167 |
print("Scores : \n", scores)
|
168 |
|
169 |
messages = history + [{"role": "user", "content": query}]
|
170 |
|
|
|
|
|
|
|
171 |
docs_url = defaultdict(str)
|
172 |
|
173 |
if len(sources) > 0:
|
174 |
docs_string = []
|
175 |
docs_html = []
|
176 |
+
citations = {}
|
177 |
|
178 |
num_tokens = num_tokens_from_string(CFG_APP.SOURCES_PROMPT, CFG_APP.MODEL_NAME)
|
179 |
+
num_doc = 1
|
180 |
|
181 |
for i, data in enumerate(sources, 1):
|
182 |
meta_doc = retrieve_doc_metadata(doc_metadata, data["meta"]["document_id"])
|
|
|
186 |
break
|
187 |
num_tokens += num_tokens_doc
|
188 |
docs_string.append(doc_content)
|
189 |
+
|
190 |
+
if meta_doc['short_name'] in citations.keys():
|
191 |
+
citations[meta_doc['short_name']][1] += f', {i}'
|
192 |
+
else :
|
193 |
+
citations[meta_doc['short_name']] = [num_doc, f'{i}']
|
194 |
+
num_doc += 1
|
195 |
+
|
196 |
+
meta_doc["num_doc"] = citations[meta_doc['short_name']][0]
|
197 |
+
|
198 |
docs_html.append(make_html_source(data, meta_doc, i))
|
199 |
|
200 |
url_doc = f'<a href="{meta_doc["url"]}#page={data["meta"]["page_number"]}" target="_blank" class="pdf-link">'
|
201 |
docs_url[i] = url_doc
|
202 |
|
203 |
+
html_cit = [make_citations_source(citations, reformulated_query, Hyde=False)]
|
204 |
+
|
205 |
+
docs_string = "\n\n".join( [f"Query used for retrieval:\n{reformulated_query}"] + docs_string)
|
206 |
+
|
207 |
+
docs_html = "\n\n".join(html_cit + docs_html)
|
208 |
+
|
209 |
messages.append(
|
210 |
{
|
211 |
"role": "system",
|
|
|
238 |
{"role": "user", "content": reformulated_query},
|
239 |
{
|
240 |
"role": "system",
|
241 |
+
"content": f"{CFG_APP.SOURCES_PROMPT}\n\nVery important : Answer in {language}.\n\n{docs_string}:",
|
242 |
},
|
243 |
],
|
244 |
temperature=0, # deterministic
|
|
|
258 |
yield gradio_format, messages, docs_html
|
259 |
|
260 |
else:
|
261 |
+
reformulated_query = openai.ChatCompletion.create(
|
262 |
+
model=CFG_APP.MODEL_NAME,
|
263 |
+
messages=get_hyde_prompt(parse_glossary(query)),
|
264 |
+
temperature=0,
|
265 |
+
max_tokens=CFG_APP.MAX_TOKENS_REF_QUESTION,
|
266 |
+
)
|
267 |
+
|
268 |
+
reformulated_query = reformulated_query["choices"][0]["message"]["content"]
|
269 |
+
|
270 |
+
if len(reformulated_query.split("\n")) == 2:
|
271 |
+
reformulated_query, language = reformulated_query.split("\n")
|
272 |
+
language = language.split(":")[1].strip()
|
273 |
+
else:
|
274 |
+
reformulated_query = reformulated_query.split("\n")[0]
|
275 |
+
language = "English"
|
276 |
+
|
277 |
+
sources, scores = text_embedder.retrieve_faiss(
|
278 |
+
reformulated_query,
|
279 |
+
k_total=k_total,
|
280 |
+
threshold=threshold,
|
281 |
+
)
|
282 |
+
|
283 |
+
if CFG_APP.DEBUG == True:
|
284 |
+
print("Scores : \n", scores)
|
285 |
+
|
286 |
+
if len(sources) > 0 :
|
287 |
+
docs_string = []
|
288 |
+
docs_html = []
|
289 |
+
citations = {}
|
290 |
+
|
291 |
+
num_tokens = num_tokens_from_string(CFG_APP.SOURCES_PROMPT, CFG_APP.MODEL_NAME)
|
292 |
+
|
293 |
+
num_doc = 1
|
294 |
+
|
295 |
+
for i, data in enumerate(sources, 1):
|
296 |
+
meta_doc = retrieve_doc_metadata(doc_metadata, data["meta"]["document_id"])
|
297 |
+
doc_content = f"π Doc {i}: \n{data['content']}"
|
298 |
+
num_tokens_doc = num_tokens_from_string(doc_content, CFG_APP.MODEL_NAME)
|
299 |
+
if num_tokens + num_tokens_doc > CFG_APP.MAX_TOKENS_API:
|
300 |
+
break
|
301 |
+
num_tokens += num_tokens_doc
|
302 |
+
docs_string.append(doc_content)
|
303 |
+
|
304 |
+
if meta_doc['short_name'] in citations.keys():
|
305 |
+
citations[meta_doc['short_name']][1] += f', {i}'
|
306 |
+
else:
|
307 |
+
citations[meta_doc['short_name']] = [num_doc, f'{i}']
|
308 |
+
num_doc += 1
|
309 |
+
|
310 |
+
meta_doc["num_doc"] = citations[meta_doc['short_name']][0]
|
311 |
+
|
312 |
+
docs_html.append(make_html_source(data, meta_doc, i))
|
313 |
+
|
314 |
+
url_doc = f'<a href="{meta_doc["url"]}#page={data["meta"]["page_number"]}" target="_blank" class="pdf-link">'
|
315 |
+
docs_url[i] = url_doc
|
316 |
+
|
317 |
+
html_cit = [make_citations_source(citations, reformulated_query, Hyde=True)]
|
318 |
+
|
319 |
+
docs_string = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_string)
|
320 |
+
|
321 |
+
docs_html = "\n\n".join(html_cit + docs_html)
|
322 |
+
|
323 |
+
messages.append(
|
324 |
+
{
|
325 |
+
"role": "system",
|
326 |
+
"content": f"{CFG_APP.SOURCES_PROMPT}\n\n{docs_string}\n\nAnswer in {language}:",
|
327 |
+
}
|
328 |
+
)
|
329 |
+
|
330 |
+
if CFG_APP.DEBUG == True:
|
331 |
+
print(f" π¨βπ» question asked by the user : {query}")
|
332 |
+
print(f" π time : {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
333 |
+
|
334 |
+
print(" π messages sent to the API :")
|
335 |
+
api_messages = [
|
336 |
+
{"role": "system", "content": CFG_APP.INIT_PROMPT},
|
337 |
+
{"role": "user", "content": reformulated_query},
|
338 |
+
{
|
339 |
+
"role": "system",
|
340 |
+
"content": f"{CFG_APP.SOURCES_PROMPT}\n\nVery important : Answer in {language}.\n\n{docs_string}:",
|
341 |
+
},
|
342 |
+
]
|
343 |
+
for message in api_messages:
|
344 |
+
print(
|
345 |
+
f"length : {len(message['content'])}, content : {message['content']}"
|
346 |
+
)
|
347 |
+
|
348 |
+
response = openai.ChatCompletion.create(
|
349 |
+
model=CFG_APP.MODEL_NAME,
|
350 |
+
messages=[
|
351 |
+
{"role": "system", "content": CFG_APP.INIT_PROMPT},
|
352 |
+
{"role": "user", "content": reformulated_query},
|
353 |
+
{
|
354 |
+
"role": "system",
|
355 |
+
"content": f"{CFG_APP.SOURCES_PROMPT}\n\nVery important : Answer in {language}.\n\n{docs_string}:",
|
356 |
+
},
|
357 |
+
],
|
358 |
+
temperature=0, # deterministic
|
359 |
+
stream=True,
|
360 |
+
max_tokens=CFG_APP.MAX_TOKENS_ANSWER,
|
361 |
+
)
|
362 |
+
complete_response = ""
|
363 |
+
messages.pop()
|
364 |
+
messages.append({"role": "assistant", "content": complete_response})
|
365 |
+
for chunk in response:
|
366 |
+
chunk_message = chunk["choices"][0]["delta"].get("content")
|
367 |
+
if chunk_message:
|
368 |
+
complete_response += chunk_message
|
369 |
+
complete_response = preprocess_message(complete_response, docs_url)
|
370 |
+
messages[-1]["content"] = complete_response
|
371 |
+
gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
372 |
+
yield gradio_format, messages, docs_html
|
373 |
+
|
374 |
+
else :
|
375 |
+
docs_string = "β οΈ No relevant passages found in this report"
|
376 |
+
complete_response = "**β οΈ No relevant passages found in this report, you may want to ask a more specific question.**"
|
377 |
+
messages.append({"role": "assistant", "content": complete_response})
|
378 |
+
gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
379 |
+
yield gradio_format, messages, docs_string
|
380 |
+
|
381 |
+
|