NexusInstruments commited on
Commit
7de47f1
·
1 Parent(s): 656d89a

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -44
app.py DELETED
@@ -1,44 +0,0 @@
1
- import torch
2
- from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
3
-
4
- # Load the data
5
- train_data = ... # load your training data here
6
- eval_data = ... # load your evaluation data here
7
-
8
- # Define the model architecture
9
- model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=8)
10
-
11
- # Set up the training arguments
12
- training_args = TrainingArguments(
13
- output_dir='./results',
14
- num_train_epochs=3,
15
- per_device_train_batch_size=16,
16
- per_device_eval_batch_size=64,
17
- warmup_steps=500,
18
- weight_decay=0.01,
19
- logging_dir='./logs',
20
- logging_first_step=True,
21
- logging_steps=50,
22
- save_total_limit=2,
23
- save_steps=500,
24
- eval_steps=500,
25
- learning_rate=5e-5,
26
- seed=42,
27
- )
28
-
29
- # Create the trainer
30
- trainer = Trainer(
31
- model=model,
32
- args=training_args,
33
- train_dataset=train_data,
34
- eval_dataset=eval_data,
35
- compute_metrics=lambda pred: {'accuracy': torch.tensor(pred).argmax().item()},
36
- )
37
-
38
- # Train the model
39
- trainer.train()
40
-
41
- # Evaluate the model
42
- loss, metrics = trainer.evaluate()
43
- print(f'Loss: {loss}')
44
- print(f'Metrics: {metrics}')