Spaces:
No application file
No application file
Commit
·
84f4546
1
Parent(s):
b2ecd2d
Create offensive_osint_trainer.py
Browse files- offensive_osint_trainer.py +44 -0
offensive_osint_trainer.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
|
3 |
+
|
4 |
+
# Load the data
|
5 |
+
train_data = ... # load your training data here
|
6 |
+
eval_data = ... # load your evaluation data here
|
7 |
+
|
8 |
+
# Define the model architecture
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=8)
|
10 |
+
|
11 |
+
# Set up the training arguments
|
12 |
+
training_args = TrainingArguments(
|
13 |
+
output_dir='./results',
|
14 |
+
num_train_epochs=3,
|
15 |
+
per_device_train_batch_size=16,
|
16 |
+
per_device_eval_batch_size=64,
|
17 |
+
warmup_steps=500,
|
18 |
+
weight_decay=0.01,
|
19 |
+
logging_dir='./logs',
|
20 |
+
logging_first_step=True,
|
21 |
+
logging_steps=50,
|
22 |
+
save_total_limit=2,
|
23 |
+
save_steps=500,
|
24 |
+
eval_steps=500,
|
25 |
+
learning_rate=5e-5,
|
26 |
+
seed=42,
|
27 |
+
)
|
28 |
+
|
29 |
+
# Create the trainer
|
30 |
+
trainer = Trainer(
|
31 |
+
model=model,
|
32 |
+
args=training_args,
|
33 |
+
train_dataset=train_data,
|
34 |
+
eval_dataset=eval_data,
|
35 |
+
compute_metrics=lambda pred: {'accuracy': torch.tensor(pred).argmax().item()},
|
36 |
+
)
|
37 |
+
|
38 |
+
# Train the model
|
39 |
+
trainer.train()
|
40 |
+
|
41 |
+
# Evaluate the model
|
42 |
+
loss, metrics = trainer.evaluate()
|
43 |
+
print(f'Loss: {loss}')
|
44 |
+
print(f'Metrics: {metrics}')
|