Spaces:
Runtime error
Runtime error
File size: 18,324 Bytes
5321b2e 4f1a520 5321b2e a7316fd 5321b2e 989d2f2 5321b2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
from typing import Any, Callable, List, Tuple
import huggingface_hub
from dataclasses import dataclass
from datetime import datetime
from time import sleep
import inspect
from random import randint
from urllib.parse import quote
from black import Mode, format_str
import gradio as gr
from huggingface_hub import InferenceClient
from constants import *
from config import DemoConfig
from tools import Tools
@dataclass
class Function:
name: str
short_description: str
description_function: Callable[[Any], str]
explanation_function: Callable[[Any], str]
FUNCTIONS = [
Function(
name="get_current_location",
short_description="Finding your city",
description_function=lambda *_, **__: "Finding your city",
explanation_function=lambda result: f"Found you in {result}!",
),
Function(
name="sort_results",
short_description="Sorting results",
description_function=lambda places, sort, descending=True, first_n = None: f"Sorting results by {sort} from "
+ ("lowest to highest" if not descending else "highest to lowest"),
explanation_function=lambda result: "Done!",
),
Function(
name="get_latitude_longitude",
short_description="Convert to coordinates",
description_function=lambda location: f"Converting {location} into latitude and longitude coordinates",
explanation_function=lambda result: "Converted!",
),
Function(
name="get_distance",
short_description="Calcuate distance",
description_function=lambda place_1, place_2: f"Calculating the distance between various places...",
explanation_function=lambda result: result[0],
),
Function(
name="get_recommendations",
short_description="Read recommendations",
description_function=lambda topics, **__: f"Reading recommendations for the following "
+ (
f"topics: {', '.join(topics)}" if len(topics) > 1 else f"topic: {topics[0]}"
),
explanation_function=lambda result: f"Read {len(result)} recommendations",
),
Function(
name="find_places_near_location",
short_description="Look for places",
description_function=lambda type_of_place, location, radius_miles = 50: f"Looking for places near {location} within {radius_miles} with the following "
+ (
f"types: {', '.join(type_of_place)}"
if isinstance(type_of_place, list)
else f"type: {type_of_place}"
),
explanation_function=lambda result: f"Found {len(result)} places!",
),
Function(
name="get_some_reviews",
short_description="Fetching reviews",
description_function=lambda place_names, **_: f"Fetching reviews for the requested items",
explanation_function=lambda result: f"Fetched {len(result)} reviews!",
),
]
class FunctionsHelper:
FUNCTION_DEFINITION_TEMPLATE = '''Function:
def {name}{signature}:
"""
{docstring}
"""
'''
PROMPT_TEMPLATE = """{function_definitions}User Query: {query}<human_end>Call:"""
def __init__(self, tools: Tools) -> None:
self.tools = tools
function_definitions = ""
for function in FUNCTIONS:
f = getattr(tools, function.name)
signature = inspect.signature(f)
docstring = inspect.getdoc(f)
function_str = self.FUNCTION_DEFINITION_TEMPLATE.format(
name=function.name, signature=signature, docstring=docstring
)
function_definitions += function_str
self.prompt_without_query = self.PROMPT_TEMPLATE.format(
function_definitions=function_definitions, query="{query}"
)
def get_prompt(self, query: str):
return self.prompt_without_query.format(query=query)
def get_function_call_plan(self, function_call_str: str) -> List[str]:
function_call_list = []
locals_to_pass = {"function_call_list": function_call_list}
for f in FUNCTIONS:
name = f.name
exec(
f"def {name}(**_):\n\tfunction_call_list.append('{f.short_description}')",
locals_to_pass,
)
calls = [c.strip() for c in function_call_str.split(";") if c.strip()]
[eval(call, locals_to_pass) for call in calls]
return function_call_list
def run_function_call(self, function_call_str: str):
function_call_list = []
locals_to_pass = {"function_call_list": function_call_list, "tools": self.tools}
for f in FUNCTIONS:
name = f.name
locals_to_pass[f"{name}_description_function"] = f.description_function
locals_to_pass[f"{name}_explanation_function"] = f.explanation_function
function_definition = f"""
def {name}(**kwargs):
result = tools.{f.name}(**kwargs)
function_call_list.append(({name}_description_function(**kwargs), {name}_explanation_function(result)))
return result
"""
exec(function_definition, locals_to_pass)
calls = [c.strip() for c in function_call_str.split(";") if c.strip()]
for call in calls:
locals_to_pass["function_call_list"] = function_call_list = []
result = eval(call, locals_to_pass)
yield result, function_call_list
class RavenDemo(gr.Blocks):
def __init__(self, config: DemoConfig) -> None:
theme = gr.themes.Soft(
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.blue,
)
super().__init__(theme=theme, css=CSS, title="NexusRaven V2 Demo")
self.config = config
self.tools = Tools(config)
self.functions_helper = FunctionsHelper(self.tools)
self.raven_client = InferenceClient(
model=config.raven_endpoint, token=config.hf_token
)
self.summary_model_client = InferenceClient(config.summary_model_endpoint)
self.max_num_steps = 20
with self:
gr.HTML(HEADER_HTML)
with gr.Row():
gr.Image(
"NexusRaven.png",
show_label=False,
show_share_button=True,
min_width=200,
scale=1,
)
with gr.Column(scale=4, min_width=800):
gr.Markdown(INTRO_TEXT, elem_classes="inner-large-font")
with gr.Row():
examples = [
gr.Button(query_name) for query_name in EXAMPLE_QUERIES
]
user_input = gr.Textbox(
placeholder="Ask me anything!",
show_label=False,
autofocus=True,
)
raven_function_call = gr.Code(
label="π¦ββ¬ NexusRaven V2 13B generated function call",
language="python",
interactive=False,
lines=10,
)
with gr.Accordion(
"Executing plan generated by π¦ββ¬ NexusRaven V2 13B", open=True
) as steps_accordion:
steps = [
gr.Textbox(visible=False, show_label=False)
for _ in range(self.max_num_steps)
]
with gr.Column():
initial_relevant_places = self.get_relevant_places([])
relevant_places = gr.State(initial_relevant_places)
place_dropdown_choices = self.get_place_dropdown_choices(
initial_relevant_places
)
places_dropdown = gr.Dropdown(
choices=place_dropdown_choices,
value=place_dropdown_choices[0],
label="Relevant places",
)
gmaps_html = gr.HTML(self.get_gmaps_html(initial_relevant_places[0]))
summary_model_summary = gr.Textbox(
label="Chat summary",
interactive=False,
show_copy_button=True,
lines=10,
max_lines=1000,
autoscroll=False,
elem_classes="inner-large-font",
)
with gr.Accordion("Raven inputs", open=False):
gr.Textbox(
label="Available functions",
value="`" + "`, `".join(f.name for f in FUNCTIONS) + "`",
interactive=False,
show_copy_button=True,
)
gr.Textbox(
label="Raven prompt",
value=self.functions_helper.get_prompt("{query}"),
interactive=False,
show_copy_button=True,
lines=20,
)
user_input.submit(
fn=self.on_submit,
inputs=[user_input],
outputs=[
user_input,
raven_function_call,
summary_model_summary,
relevant_places,
places_dropdown,
gmaps_html,
steps_accordion,
*steps,
],
concurrency_limit=20, # not a hyperparameter
api_name=False,
)
for i, button in enumerate(examples):
button.click(
fn=EXAMPLE_QUERIES.get,
inputs=button,
outputs=user_input,
api_name=f"button_click_{i}",
)
places_dropdown.input(
fn=self.get_gmaps_html_from_dropdown,
inputs=[places_dropdown, relevant_places],
outputs=gmaps_html,
)
def on_submit(self, query: str, request: gr.Request):
def get_returns():
return (
user_input,
raven_function_call,
summary_model_summary,
relevant_places,
places_dropdown,
gmaps_html,
steps_accordion,
*steps,
)
user_input = gr.Textbox(interactive=False)
raven_function_call = ""
summary_model_summary = ""
relevant_places = []
places_dropdown = ""
gmaps_html = ""
steps_accordion = gr.Accordion(open=True)
steps = [gr.Textbox(value="", visible=False) for _ in range(self.max_num_steps)]
yield get_returns()
raven_prompt = self.functions_helper.get_prompt(query.replace("'", r"\'").replace('"', r'\"'))
print(f"{'-' * 80}\nPrompt sent to Raven\n\n{raven_prompt}\n\n{'-' * 80}\n")
stream = self.raven_client.text_generation(
raven_prompt, **RAVEN_GENERATION_KWARGS
)
for s in stream:
for c in s:
raven_function_call += c
raven_function_call = raven_function_call.removesuffix("<bot_end>")
yield get_returns()
print(f"Raw Raven response before formatting: {raven_function_call}")
r_calls = [c.strip() for c in raven_function_call.split(";") if c.strip()]
f_r_calls = []
for r_c in r_calls:
f_r_call = format_str(r_c.strip(), mode=Mode())
f_r_calls.append(f_r_call)
raven_function_call = "; ".join(f_r_calls)
yield get_returns()
self._set_client_ip(request)
function_call_plan = self.functions_helper.get_function_call_plan(
raven_function_call
)
for i, v in enumerate(function_call_plan):
steps[i] = gr.Textbox(value=f"{i+1}. {v}", visible=True)
yield get_returns()
sleep(0.1)
results_gen = self.functions_helper.run_function_call(raven_function_call)
results = []
previous_num_calls = 0
for result, function_call_list in results_gen:
results.extend(result)
for i, (description, explanation) in enumerate(function_call_list):
i = i + previous_num_calls
to_stream = f"{i+1}. {description} ..."
steps[i] = ""
for c in to_stream:
steps[i] += c
sleep(0.005)
yield get_returns()
to_stream = "." * randint(0, 5)
for c in to_stream:
steps[i] += c
sleep(0.2)
yield get_returns()
to_stream = f" {explanation}"
for c in to_stream:
steps[i] += c
sleep(0.005)
yield get_returns()
previous_num_calls += len(function_call_list)
relevant_places = self.get_relevant_places(results)
gmaps_html = self.get_gmaps_html(relevant_places[0])
places_dropdown_choices = self.get_place_dropdown_choices(relevant_places)
places_dropdown = gr.Dropdown(
choices=places_dropdown_choices, value=places_dropdown_choices[0]
)
steps_accordion = gr.Accordion(open=False)
yield get_returns()
while True:
try:
summary_model_prompt = self.get_summary_model_prompt(results, query)
print(
f"{'-' * 80}\nPrompt sent to summary model\n\n{summary_model_prompt}\n\n{'-' * 80}\n"
)
stream = self.summary_model_client.text_generation(
summary_model_prompt, **SUMMARY_MODEL_GENERATION_KWARGS
)
for s in stream:
for c in s:
summary_model_summary += c
summary_model_summary = summary_model_summary.lstrip().removesuffix(
"<|end_of_turn|>"
)
yield get_returns()
except huggingface_hub.inference._text_generation.ValidationError:
if len(results) > 1:
new_length = (3*len(results)) // 4
results = results[:new_length]
continue
else:
break
break
user_input = gr.Textbox(interactive=True)
yield get_returns()
def get_summary_model_prompt(self, results: List, query: str) -> None:
# TODO check what outputs are returned and return them properly
ALLOWED_KEYS = [
"author_name",
"text",
"for_location",
"time",
"author_url",
"language",
"original_language",
"name",
"opening_hours",
"rating",
"user_ratings_total",
"vicinity",
"distance",
"formatted_address",
"price_level",
"types",
]
ALLOWED_KEYS = set(ALLOWED_KEYS)
results_str = ""
for idx, res in enumerate(results):
if isinstance(res, str):
results_str += f"{res}\n"
continue
assert isinstance(res, dict)
item_str = ""
for key, value in res.items():
if key not in ALLOWED_KEYS:
continue
key = key.replace("_", " ").capitalize()
item_str += f"\t{key}: {value}\n"
results_str += f"Result {idx + 1}\n{item_str}\n"
current_time = datetime.now().strftime("%b %d, %Y %H:%M:%S")
current_location = self.tools.get_current_location()
prompt = SUMMARY_MODEL_PROMPT.format(
current_location=current_location,
current_time=current_time,
results=results_str,
query=query,
)
return prompt
def get_relevant_places(self, results: List) -> List[Tuple[str, str]]:
"""
Returns
-------
relevant_places: List[Tuple[str, str]]
A list of tuples, where each tuple is (address, name)
"""
# We use a dict to preserve ordering, while enforcing uniqueness
relevant_places = dict()
for result in results:
if "formatted_address" in result and "name" in result:
relevant_places[(result["formatted_address"], result["name"])] = None
elif "formatted_address" in result and "for_location" in result:
relevant_places[
(result["formatted_address"], result["for_location"])
] = None
relevant_places = list(relevant_places.keys())
if not relevant_places:
current_location = self.tools.get_current_location()
relevant_places.append((current_location, current_location))
return relevant_places
def get_place_dropdown_choices(
self, relevant_places: List[Tuple[str, str]]
) -> List[str]:
return [p[1] for p in relevant_places]
def get_gmaps_html(self, relevant_place: Tuple[str, str]) -> str:
address, name = relevant_place
return GMAPS_EMBED_HTML_TEMPLATE.format(
address=quote(address), location=quote(name)
)
def get_gmaps_html_from_dropdown(
self, place_name: str, relevant_places: List[Tuple[str, str]]
) -> str:
relevant_place = [p for p in relevant_places if p[1] == place_name][0]
return self.get_gmaps_html(relevant_place)
def _set_client_ip(self, request: gr.Request) -> None:
client_ip = request.client.host
if (
"headers" in request.kwargs
and "x-forwarded-for" in request.kwargs["headers"]
):
x_forwarded_for = request.kwargs["headers"]["x-forwarded-for"]
else:
x_forwarded_for = request.headers.get("x-forwarded-for", None)
if x_forwarded_for:
client_ip = x_forwarded_for.split(",")[0].strip()
self.tools.client_ip = client_ip
demo = RavenDemo(DemoConfig.load_from_env())
if __name__ == "__main__":
demo.launch(
share=True,
allowed_paths=["logo.png", "NexusRaven.png"],
favicon_path="logo.png",
)
|