Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
import time
|
3 |
-
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
asr_pipeline = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
|
7 |
-
|
8 |
-
# Load classifier model and tokenizer
|
9 |
-
classifier_model = AutoModelForSequenceClassification.from_pretrained("Ngadou/bert-sms-spam-dectector")
|
10 |
-
classifier_tokenizer = AutoTokenizer.from_pretrained("Ngadou/bert-sms-spam-dectector")
|
11 |
|
12 |
def classify_audio(audio):
|
13 |
# Transcribe the audio to text
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
# Get the
|
21 |
-
|
|
|
22 |
|
23 |
# Return the transcription and the prediction as a dictionary
|
24 |
-
return
|
25 |
|
26 |
gr.Interface(
|
27 |
-
fn=classify_audio,
|
28 |
inputs=gr.inputs.Audio(source="upload", type="filepath"),
|
29 |
outputs=[
|
30 |
gr.outputs.Textbox(label="Transcription"),
|
31 |
gr.outputs.Textbox(label="Classification"),
|
|
|
32 |
],
|
33 |
live=True
|
34 |
-
).launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
import time
|
3 |
+
import openai
|
4 |
+
import json
|
5 |
+
import os
|
6 |
|
7 |
+
openai.api_key = os.environ.get('OPENAI_KEY')
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def classify_audio(audio):
|
10 |
# Transcribe the audio to text
|
11 |
+
audio_transcript = asr_pipeline(audio)["text"]
|
12 |
+
audio_transcript = audio_transcript.lower()
|
13 |
+
|
14 |
+
messages = [
|
15 |
+
{"role": "system", "content": "Is this chat a scam, spam or is safe? Only answer in JSON format with 'classification': '' as string and 'reasons': '' as the most plausible reasons why. The reason should be explaning to the potential victim why the conversation is probably a scam"},
|
16 |
+
{"role": "user", "content": audio_transcript},
|
17 |
+
]
|
18 |
+
|
19 |
+
# Call the OpenAI API to generate a response
|
20 |
+
response = openai.ChatCompletion.create(
|
21 |
+
model="gpt-4", # Replace with the actual GPT-4 model ID
|
22 |
+
messages=messages
|
23 |
+
)
|
24 |
|
25 |
+
# Extract the generated text
|
26 |
+
text = response.choices[0].message['content']
|
27 |
+
text = json.loads(text)
|
28 |
|
29 |
+
# Get the decision and reasons from the JSON dictionary
|
30 |
+
decision = text["classification"]
|
31 |
+
reasons = text["reasons"]
|
32 |
|
33 |
# Return the transcription and the prediction as a dictionary
|
34 |
+
return audio_transcript, decision, reasons
|
35 |
|
36 |
gr.Interface(
|
37 |
+
fn=classify_audio,
|
38 |
inputs=gr.inputs.Audio(source="upload", type="filepath"),
|
39 |
outputs=[
|
40 |
gr.outputs.Textbox(label="Transcription"),
|
41 |
gr.outputs.Textbox(label="Classification"),
|
42 |
+
gr.outputs.Textbox(label="Reason"),
|
43 |
],
|
44 |
live=True
|
45 |
+
).launch(share=True, debug=True)
|