# from flask import Flask, render_template, request from sentence_transformers import util import torch from semantic import load_corpus_and_model # app = Flask(__name__) query_prefix = "query: " # # Load the pre-encoded answers from the file answers_emb = torch.load('encoded_answers.pt') test_queries, test_doc, model = load_corpus_and_model() import gradio as gr def query(q): user_query = q query_emb = model.encode([query_prefix + user_query], convert_to_tensor=True, show_progress_bar=False) best_answer_index = util.cos_sim(query_emb, answers_emb).argmax().item() best_answer_key = list(test_doc.keys())[best_answer_index] best_answer = test_doc[best_answer_key] return best_answer iface = gr.Interface(fn=query, inputs="text", outputs="text") iface.launch()