verbalens / app.py
Ngoufack's picture
test
aa45e11
raw
history blame
3.7 kB
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
import whisperx
import tempfile
import os
device = "cuda" if torch.cuda.is_available() else "cpu"
BATCH_SIZE = 4
FILE_LIMIT_MB = 1000
COMPUTE_TYPE = "float32"
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
model = whisperx.load_model("large-v2", device,compute_type=COMPUTE_TYPE)
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
audio = whisperx.load_audio(inputs)
result = model.transcribe(audio, batch_size=BATCH_SIZE)
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
diarize_model = whisperx.DiarizationPipeline(use_auth_token=os.getenv("HF_TOKEN"), device=device)
diarize_segments = diarize_model(audio)
result = whisperx.assign_word_speakers(diarize_segments, result)
output_text = ""
for segment in result['segments']:
speaker = segment.get('speaker', 'Unknown Speaker')
text = segment['text']
output_text += f"{speaker}: {text}\n"
return output_text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
return f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>'
def download_yt_audio(yt_url, filename):
ydl_opts = {
"format": "bestaudio/best",
"outtmpl": filename,
"postprocessors": [{
"key": "FFmpegExtractAudio",
"preferredcodec": "wav",
"preferredquality": "192",
}],
}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
ydl.download([yt_url])
@spaces.GPU
def yt_transcribe(yt_url, task):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "audio.wav")
download_yt_audio(yt_url, filepath)
audio = whisperx.load_audio(filepath)
result = model.transcribe(audio, batch_size=BATCH_SIZE)
return html_embed_str, result["text"]
demo = gr.Blocks(theme=gr.themes.Ocean())
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="VerbaLens Demo 1 : Prototype",
description="Transcribe long-form microphone or audio inputs using WhisperX.",
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="VerbaLens Demo 1 : Prototype",
description="Transcribe uploaded audio files using WhisperX.",
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs=["html", "text"],
title="VerbaLend Demo with WhisperX",
description="Transcribe YouTube videos using WhisperX.",
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.queue().launch(ssr_mode=False)