hotfix 2.2
Browse files
app.py
CHANGED
@@ -1,37 +1,28 @@
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import yt_dlp as youtube_dl
|
6 |
-
from
|
7 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
-
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
12 |
-
MODEL_NAME = "
|
13 |
BATCH_SIZE = 8
|
14 |
FILE_LIMIT_MB = 1000
|
15 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
16 |
|
17 |
-
device =
|
18 |
-
|
19 |
-
pipe = pipeline(
|
20 |
-
task="automatic-speech-recognition",
|
21 |
-
model=MODEL_NAME,
|
22 |
-
chunk_length_s=30,
|
23 |
-
device=device,
|
24 |
-
)
|
25 |
-
|
26 |
|
27 |
@spaces.GPU
|
28 |
def transcribe(inputs, task):
|
29 |
if inputs is None:
|
30 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
def _return_yt_html_embed(yt_url):
|
37 |
video_id = yt_url.split("?v=")[-1]
|
@@ -49,23 +40,11 @@ def download_yt_audio(yt_url, filename):
|
|
49 |
except youtube_dl.utils.DownloadError as err:
|
50 |
raise gr.Error(str(err))
|
51 |
|
52 |
-
|
53 |
-
file_h_m_s = file_length.split(":")
|
54 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
55 |
-
|
56 |
-
if len(file_h_m_s) == 1:
|
57 |
-
file_h_m_s.insert(0, 0)
|
58 |
-
if len(file_h_m_s) == 2:
|
59 |
-
file_h_m_s.insert(0, 0)
|
60 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
61 |
-
|
62 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
-
|
64 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
65 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
-
|
67 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
68 |
|
|
|
69 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
try:
|
71 |
ydl.download([yt_url])
|
@@ -73,7 +52,7 @@ def download_yt_audio(yt_url, filename):
|
|
73 |
raise gr.Error(str(err))
|
74 |
|
75 |
@spaces.GPU
|
76 |
-
def yt_transcribe(yt_url, task
|
77 |
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
@@ -81,15 +60,13 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
81 |
download_yt_audio(yt_url, filepath)
|
82 |
with open(filepath, "rb") as f:
|
83 |
inputs = f.read()
|
84 |
-
|
85 |
-
inputs = ffmpeg_read(inputs,
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
return html_embed_str, text
|
91 |
|
92 |
-
|
93 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
94 |
|
95 |
mf_transcribe = gr.Interface(
|
@@ -101,9 +78,7 @@ mf_transcribe = gr.Interface(
|
|
101 |
outputs="text",
|
102 |
title="VerbaLend Demo 1 : Prototype",
|
103 |
description=(
|
104 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses
|
105 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files"
|
106 |
-
" of arbitrary length."
|
107 |
),
|
108 |
allow_flagging="never",
|
109 |
)
|
@@ -116,11 +91,7 @@ file_transcribe = gr.Interface(
|
|
116 |
],
|
117 |
outputs="text",
|
118 |
title="VerbaLend Demo 1 : Prototype",
|
119 |
-
description=
|
120 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
121 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files"
|
122 |
-
" of arbitrary length."
|
123 |
-
),
|
124 |
allow_flagging="never",
|
125 |
)
|
126 |
|
@@ -132,11 +103,7 @@ yt_transcribe = gr.Interface(
|
|
132 |
],
|
133 |
outputs=["html", "text"],
|
134 |
title="VerbaLend Demo 1 : Prototype",
|
135 |
-
description=
|
136 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
137 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe video files of"
|
138 |
-
" arbitrary length."
|
139 |
-
),
|
140 |
allow_flagging="never",
|
141 |
)
|
142 |
|
@@ -144,3 +111,4 @@ with demo:
|
|
144 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
145 |
|
146 |
demo.queue().launch(ssr_mode=False)
|
|
|
|
1 |
import spaces
|
2 |
import torch
|
|
|
3 |
import gradio as gr
|
4 |
import yt_dlp as youtube_dl
|
5 |
+
from faster_whisper import WhisperModel
|
6 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
7 |
import tempfile
|
8 |
import os
|
9 |
|
10 |
+
MODEL_NAME = "large-v3"
|
11 |
BATCH_SIZE = 8
|
12 |
FILE_LIMIT_MB = 1000
|
13 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
14 |
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
model = WhisperModel(MODEL_NAME, device=device, compute_type="float16" if torch.cuda.is_available() else "int8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
@spaces.GPU
|
19 |
def transcribe(inputs, task):
|
20 |
if inputs is None:
|
21 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
22 |
+
|
23 |
+
segments, _ = model.transcribe(inputs, task=task)
|
24 |
+
text = " ".join([segment.text for segment in segments])
|
25 |
+
return text
|
26 |
|
27 |
def _return_yt_html_embed(yt_url):
|
28 |
video_id = yt_url.split("?v=")[-1]
|
|
|
40 |
except youtube_dl.utils.DownloadError as err:
|
41 |
raise gr.Error(str(err))
|
42 |
|
43 |
+
file_length_s = info["duration"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
45 |
+
raise gr.Error(f"Maximum YouTube length is {YT_LENGTH_LIMIT_S} seconds, got {file_length_s} seconds.")
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"}
|
48 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
49 |
try:
|
50 |
ydl.download([yt_url])
|
|
|
52 |
raise gr.Error(str(err))
|
53 |
|
54 |
@spaces.GPU
|
55 |
+
def yt_transcribe(yt_url, task):
|
56 |
html_embed_str = _return_yt_html_embed(yt_url)
|
57 |
|
58 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
|
60 |
download_yt_audio(yt_url, filepath)
|
61 |
with open(filepath, "rb") as f:
|
62 |
inputs = f.read()
|
63 |
+
|
64 |
+
inputs = ffmpeg_read(inputs, 16000) # Convertir en 16kHz
|
65 |
+
segments, _ = model.transcribe(inputs, task=task)
|
66 |
+
text = " ".join([segment.text for segment in segments])
|
67 |
+
|
|
|
68 |
return html_embed_str, text
|
69 |
|
|
|
70 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
71 |
|
72 |
mf_transcribe = gr.Interface(
|
|
|
78 |
outputs="text",
|
79 |
title="VerbaLend Demo 1 : Prototype",
|
80 |
description=(
|
81 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Faster Whisper"
|
|
|
|
|
82 |
),
|
83 |
allow_flagging="never",
|
84 |
)
|
|
|
91 |
],
|
92 |
outputs="text",
|
93 |
title="VerbaLend Demo 1 : Prototype",
|
94 |
+
description="Transcribe uploaded audio files with Faster Whisper.",
|
|
|
|
|
|
|
|
|
95 |
allow_flagging="never",
|
96 |
)
|
97 |
|
|
|
103 |
],
|
104 |
outputs=["html", "text"],
|
105 |
title="VerbaLend Demo 1 : Prototype",
|
106 |
+
description="Transcribe YouTube videos using Faster Whisper.",
|
|
|
|
|
|
|
|
|
107 |
allow_flagging="never",
|
108 |
)
|
109 |
|
|
|
111 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
112 |
|
113 |
demo.queue().launch(ssr_mode=False)
|
114 |
+
|