hotfix 2.0
Browse files
README.md
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
---
|
2 |
title: Verbalens
|
3 |
emoji: π
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.20.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: this is a first prototype of verbalens using whisper and nem
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Verbalens
|
3 |
emoji: π
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.20.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: this is a first prototype of verbalens using whisper and nem
|
11 |
---
|
|
|
|
app.py
CHANGED
@@ -1,33 +1,36 @@
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
-
from faster_whisper import WhisperModel
|
4 |
|
5 |
import gradio as gr
|
6 |
import yt_dlp as youtube_dl
|
7 |
-
|
8 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
9 |
|
10 |
import tempfile
|
11 |
import os
|
12 |
|
13 |
-
MODEL_NAME = "large-v3"
|
14 |
BATCH_SIZE = 8
|
15 |
FILE_LIMIT_MB = 1000
|
16 |
-
YT_LENGTH_LIMIT_S =
|
17 |
|
18 |
device = 0 if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
@spaces.GPU
|
23 |
def transcribe(inputs, task):
|
24 |
if inputs is None:
|
25 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
#text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
30 |
-
return transcription
|
31 |
|
32 |
|
33 |
def _return_yt_html_embed(yt_url):
|
@@ -61,10 +64,7 @@ def download_yt_audio(yt_url, filename):
|
|
61 |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
62 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
63 |
|
64 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"
|
65 |
-
'key': 'FFmpegExtractAudio',
|
66 |
-
'preferredcodec': 'mp3',
|
67 |
-
}]}
|
68 |
|
69 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
try:
|
@@ -77,32 +77,32 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
77 |
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
-
filepath = os.path.join(tmpdirname, "
|
81 |
download_yt_audio(yt_url, filepath)
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
segments, info = model.transcribe(filepath, beam_size=5, vad_filter=True, word_timestamps=False)
|
88 |
-
transcription = " ".join([segment.text for segment in segments])
|
89 |
|
90 |
-
return html_embed_str,
|
91 |
|
92 |
|
93 |
-
demo = gr.Blocks()
|
94 |
|
95 |
mf_transcribe = gr.Interface(
|
96 |
fn=transcribe,
|
97 |
inputs=[
|
98 |
gr.Audio(sources="microphone", type="filepath"),
|
99 |
-
gr.Radio(["transcribe", "
|
100 |
],
|
101 |
outputs="text",
|
102 |
-
title="
|
103 |
description=(
|
104 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
105 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME})
|
106 |
" of arbitrary length."
|
107 |
),
|
108 |
allow_flagging="never",
|
@@ -115,11 +115,11 @@ file_transcribe = gr.Interface(
|
|
115 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
116 |
],
|
117 |
outputs="text",
|
118 |
-
title="
|
119 |
description=(
|
120 |
-
|
121 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME})
|
122 |
-
" arbitrary length."
|
123 |
),
|
124 |
allow_flagging="never",
|
125 |
)
|
@@ -128,12 +128,14 @@ yt_transcribe = gr.Interface(
|
|
128 |
fn=yt_transcribe,
|
129 |
inputs=[
|
130 |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
131 |
-
gr.Radio(["transcribe", "
|
132 |
],
|
133 |
outputs=["html", "text"],
|
134 |
-
title="
|
135 |
description=(
|
136 |
-
"Transcribe long-form videos with the click of a button! Demo uses the checkpoint
|
|
|
|
|
137 |
),
|
138 |
allow_flagging="never",
|
139 |
)
|
@@ -141,4 +143,4 @@ yt_transcribe = gr.Interface(
|
|
141 |
with demo:
|
142 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
143 |
|
144 |
-
demo.queue().launch()
|
|
|
1 |
import spaces
|
2 |
import torch
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import yt_dlp as youtube_dl
|
6 |
+
from transformers import pipeline
|
7 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
12 |
+
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
13 |
BATCH_SIZE = 8
|
14 |
FILE_LIMIT_MB = 1000
|
15 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
16 |
|
17 |
device = 0 if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
+
pipe = pipeline(
|
20 |
+
task="automatic-speech-recognition",
|
21 |
+
model=MODEL_NAME,
|
22 |
+
chunk_length_s=30,
|
23 |
+
device=device,
|
24 |
+
)
|
25 |
+
|
26 |
|
27 |
@spaces.GPU
|
28 |
def transcribe(inputs, task):
|
29 |
if inputs is None:
|
30 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
+
|
32 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
33 |
+
return text
|
|
|
|
|
34 |
|
35 |
|
36 |
def _return_yt_html_embed(yt_url):
|
|
|
64 |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
65 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
|
67 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
|
|
|
|
|
|
68 |
|
69 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
try:
|
|
|
77 |
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
81 |
download_yt_audio(yt_url, filepath)
|
82 |
+
with open(filepath, "rb") as f:
|
83 |
+
inputs = f.read()
|
84 |
|
85 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
|
88 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
|
|
|
|
89 |
|
90 |
+
return html_embed_str, text
|
91 |
|
92 |
|
93 |
+
demo = gr.Blocks(theme=gr.themes.Ocean())
|
94 |
|
95 |
mf_transcribe = gr.Interface(
|
96 |
fn=transcribe,
|
97 |
inputs=[
|
98 |
gr.Audio(sources="microphone", type="filepath"),
|
99 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
100 |
],
|
101 |
outputs="text",
|
102 |
+
title="Whisper Large V3 Turbo: Transcribe Audio",
|
103 |
description=(
|
104 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
105 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files"
|
106 |
" of arbitrary length."
|
107 |
),
|
108 |
allow_flagging="never",
|
|
|
115 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
116 |
],
|
117 |
outputs="text",
|
118 |
+
title="Whisper Large V3: Transcribe Audio",
|
119 |
description=(
|
120 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
121 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files"
|
122 |
+
" of arbitrary length."
|
123 |
),
|
124 |
allow_flagging="never",
|
125 |
)
|
|
|
128 |
fn=yt_transcribe,
|
129 |
inputs=[
|
130 |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
131 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
132 |
],
|
133 |
outputs=["html", "text"],
|
134 |
+
title="Whisper Large V3: Transcribe YouTube",
|
135 |
description=(
|
136 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
137 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe video files of"
|
138 |
+
" arbitrary length."
|
139 |
),
|
140 |
allow_flagging="never",
|
141 |
)
|
|
|
143 |
with demo:
|
144 |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
145 |
|
146 |
+
demo.queue().launch(ssr_mode=False)
|