edited
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from pyannote.core import Segment
|
|
13 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
14 |
|
15 |
|
16 |
-
MODEL_NAME = "
|
17 |
BATCH_SIZE = 8
|
18 |
FILE_LIMIT_MB = 1000
|
19 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
@@ -36,8 +36,8 @@ def transcribe(inputs, task):
|
|
36 |
transform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
37 |
waveform = transform(waveform)
|
38 |
|
39 |
-
diarization = pipeline({"uri": "audio", "audio": audio_path})
|
40 |
-
speaker_segments = []
|
41 |
return text
|
42 |
|
43 |
def _return_yt_html_embed(yt_url):
|
|
|
13 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
14 |
|
15 |
|
16 |
+
MODEL_NAME = "medium"
|
17 |
BATCH_SIZE = 8
|
18 |
FILE_LIMIT_MB = 1000
|
19 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
|
|
36 |
transform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
37 |
waveform = transform(waveform)
|
38 |
|
39 |
+
#diarization = pipeline({"uri": "audio", "audio": audio_path})
|
40 |
+
#speaker_segments = []
|
41 |
return text
|
42 |
|
43 |
def _return_yt_html_embed(yt_url):
|