mis a jour
Browse files- app.py +19 -12
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import spaces
|
2 |
import torch
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import yt_dlp as youtube_dl
|
@@ -9,7 +10,7 @@ from transformers.pipelines.audio_utils import ffmpeg_read
|
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
12 |
-
MODEL_NAME = "
|
13 |
BATCH_SIZE = 8
|
14 |
FILE_LIMIT_MB = 1000
|
15 |
YT_LENGTH_LIMIT_S = 600 # limit to 1 hour YouTube files
|
@@ -23,14 +24,17 @@ pipe = pipeline(
|
|
23 |
device=device,
|
24 |
)
|
25 |
|
|
|
26 |
|
27 |
@spaces.GPU
|
28 |
def transcribe(inputs, task):
|
29 |
if inputs is None:
|
30 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
|
36 |
def _return_yt_html_embed(yt_url):
|
@@ -64,7 +68,10 @@ def download_yt_audio(yt_url, filename):
|
|
64 |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
65 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
|
67 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"
|
|
|
|
|
|
|
68 |
|
69 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
try:
|
@@ -77,17 +84,17 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
77 |
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
-
filepath = os.path.join(tmpdirname, "video.
|
81 |
download_yt_audio(yt_url, filepath)
|
82 |
-
with open(filepath, "rb") as f:
|
83 |
-
inputs = f.read()
|
84 |
|
85 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
|
88 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
|
|
|
|
89 |
|
90 |
-
return html_embed_str,
|
91 |
|
92 |
|
93 |
demo = gr.Blocks()
|
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
+
from faster_whisper import WhisperModel
|
4 |
|
5 |
import gradio as gr
|
6 |
import yt_dlp as youtube_dl
|
|
|
10 |
import tempfile
|
11 |
import os
|
12 |
|
13 |
+
MODEL_NAME = "large-v3"
|
14 |
BATCH_SIZE = 8
|
15 |
FILE_LIMIT_MB = 1000
|
16 |
YT_LENGTH_LIMIT_S = 600 # limit to 1 hour YouTube files
|
|
|
24 |
device=device,
|
25 |
)
|
26 |
|
27 |
+
model = WhisperModel(MODEL_NAME, device=device, compute_type="float16" if device == "cuda" else "int8")
|
28 |
|
29 |
@spaces.GPU
|
30 |
def transcribe(inputs, task):
|
31 |
if inputs is None:
|
32 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
33 |
+
segments, info = model.transcribe(input, beam_size=5,batch_size=BATCH_SIZE, vad_filter=True, word_timestamps=False)
|
34 |
+
transcription = " ".join([segment.text for segment in segments])
|
35 |
+
|
36 |
+
#text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
37 |
+
return transcription
|
38 |
|
39 |
|
40 |
def _return_yt_html_embed(yt_url):
|
|
|
68 |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
69 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
70 |
|
71 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best",'postprocessors': [{
|
72 |
+
'key': 'FFmpegExtractAudio',
|
73 |
+
'preferredcodec': 'mp3',
|
74 |
+
}]}
|
75 |
|
76 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
77 |
try:
|
|
|
84 |
html_embed_str = _return_yt_html_embed(yt_url)
|
85 |
|
86 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
87 |
+
filepath = os.path.join(tmpdirname, "video.mp3")
|
88 |
download_yt_audio(yt_url, filepath)
|
|
|
|
|
89 |
|
90 |
+
#inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
91 |
+
#inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
92 |
|
93 |
+
#text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
94 |
+
segments, info = model.transcribe(filepath, beam_size=5,batch_size=BATCH_SIZE, vad_filter=True, word_timestamps=False)
|
95 |
+
transcription = " ".join([segment.text for segment in segments])
|
96 |
|
97 |
+
return html_embed_str, transcription
|
98 |
|
99 |
|
100 |
demo = gr.Blocks()
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ yt-dlp
|
|
3 |
torch
|
4 |
torchvision
|
5 |
torchaudio
|
6 |
-
nemo_toolkit
|
|
|
|
3 |
torch
|
4 |
torchvision
|
5 |
torchaudio
|
6 |
+
nemo_toolkit
|
7 |
+
faster-whisper
|