Spaces:
Running
Running
Husnain
commited on
Commit
•
e9f6b1e
1
Parent(s):
b5f45b3
Delete networks/message_streamer.py
Browse files- networks/message_streamer.py +0 -201
networks/message_streamer.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import re
|
3 |
-
import requests
|
4 |
-
|
5 |
-
from tiktoken import get_encoding as tiktoken_get_encoding
|
6 |
-
from transformers import AutoTokenizer
|
7 |
-
|
8 |
-
from constants.models import (
|
9 |
-
MODEL_MAP,
|
10 |
-
STOP_SEQUENCES_MAP,
|
11 |
-
TOKEN_LIMIT_MAP,
|
12 |
-
TOKEN_RESERVED,
|
13 |
-
)
|
14 |
-
from messagers.message_outputer import OpenaiStreamOutputer
|
15 |
-
from utils.logger import logger
|
16 |
-
from utils.enver import enver
|
17 |
-
|
18 |
-
|
19 |
-
class MessageStreamer:
|
20 |
-
|
21 |
-
def __init__(self, model: str):
|
22 |
-
if model in MODEL_MAP.keys():
|
23 |
-
self.model = model
|
24 |
-
else:
|
25 |
-
self.model = "default"
|
26 |
-
self.model_fullname = MODEL_MAP[self.model]
|
27 |
-
self.message_outputer = OpenaiStreamOutputer()
|
28 |
-
|
29 |
-
if self.model == "gemma-7b":
|
30 |
-
# this is not wrong, as repo `google/gemma-7b-it` is gated and must authenticate to access it
|
31 |
-
# so I use mistral-7b as a fallback
|
32 |
-
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_MAP["mistral-7b"])
|
33 |
-
else:
|
34 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.model_fullname)
|
35 |
-
|
36 |
-
def parse_line(self, line):
|
37 |
-
line = line.decode("utf-8")
|
38 |
-
line = re.sub(r"data:\s*", "", line)
|
39 |
-
data = json.loads(line)
|
40 |
-
try:
|
41 |
-
content = data["token"]["text"]
|
42 |
-
except:
|
43 |
-
logger.err(data)
|
44 |
-
return content
|
45 |
-
|
46 |
-
def count_tokens(self, text):
|
47 |
-
tokens = self.tokenizer.encode(text)
|
48 |
-
token_count = len(tokens)
|
49 |
-
logger.note(f"Prompt Token Count: {token_count}")
|
50 |
-
return token_count
|
51 |
-
|
52 |
-
def chat_response(
|
53 |
-
self,
|
54 |
-
prompt: str = None,
|
55 |
-
temperature: float = 0.5,
|
56 |
-
top_p: float = 0.95,
|
57 |
-
max_new_tokens: int = None,
|
58 |
-
api_key: str = None,
|
59 |
-
use_cache: bool = False,
|
60 |
-
):
|
61 |
-
# https://huggingface.co/docs/api-inference/detailed_parameters?code=curl
|
62 |
-
# curl --proxy http://<server>:<port> https://api-inference.huggingface.co/models/<org>/<model_name> -X POST -d '{"inputs":"who are you?","parameters":{"max_new_token":64}}' -H 'Content-Type: application/json' -H 'Authorization: Bearer <HF_TOKEN>'
|
63 |
-
self.request_url = (
|
64 |
-
f"https://api-inference.huggingface.co/models/{self.model_fullname}"
|
65 |
-
)
|
66 |
-
self.request_headers = {
|
67 |
-
"Content-Type": "application/json",
|
68 |
-
}
|
69 |
-
|
70 |
-
if api_key:
|
71 |
-
logger.note(
|
72 |
-
f"Using API Key: {api_key[:3]}{(len(api_key)-7)*'*'}{api_key[-4:]}"
|
73 |
-
)
|
74 |
-
self.request_headers["Authorization"] = f"Bearer {api_key}"
|
75 |
-
|
76 |
-
if temperature is None or temperature < 0:
|
77 |
-
temperature = 0.0
|
78 |
-
# temperature must 0 < and < 1 for HF LLM models
|
79 |
-
temperature = max(temperature, 0.01)
|
80 |
-
temperature = min(temperature, 0.99)
|
81 |
-
top_p = max(top_p, 0.01)
|
82 |
-
top_p = min(top_p, 0.99)
|
83 |
-
|
84 |
-
token_limit = int(
|
85 |
-
TOKEN_LIMIT_MAP[self.model] - TOKEN_RESERVED - self.count_tokens(prompt)
|
86 |
-
)
|
87 |
-
if token_limit <= 0:
|
88 |
-
raise ValueError("Prompt exceeded token limit!")
|
89 |
-
|
90 |
-
if max_new_tokens is None or max_new_tokens <= 0:
|
91 |
-
max_new_tokens = token_limit
|
92 |
-
else:
|
93 |
-
max_new_tokens = min(max_new_tokens, token_limit)
|
94 |
-
|
95 |
-
# References:
|
96 |
-
# huggingface_hub/inference/_client.py:
|
97 |
-
# class InferenceClient > def text_generation()
|
98 |
-
# huggingface_hub/inference/_text_generation.py:
|
99 |
-
# class TextGenerationRequest > param `stream`
|
100 |
-
# https://huggingface.co/docs/text-generation-inference/conceptual/streaming#streaming-with-curl
|
101 |
-
# https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task
|
102 |
-
self.request_body = {
|
103 |
-
"inputs": prompt,
|
104 |
-
"parameters": {
|
105 |
-
"temperature": temperature,
|
106 |
-
"top_p": top_p,
|
107 |
-
"max_new_tokens": max_new_tokens,
|
108 |
-
"return_full_text": False,
|
109 |
-
},
|
110 |
-
"options": {
|
111 |
-
"use_cache": use_cache,
|
112 |
-
},
|
113 |
-
"stream": True,
|
114 |
-
}
|
115 |
-
|
116 |
-
if self.model in STOP_SEQUENCES_MAP.keys():
|
117 |
-
self.stop_sequences = STOP_SEQUENCES_MAP[self.model]
|
118 |
-
# self.request_body["parameters"]["stop_sequences"] = [
|
119 |
-
# self.STOP_SEQUENCES[self.model]
|
120 |
-
# ]
|
121 |
-
|
122 |
-
logger.back(self.request_url)
|
123 |
-
enver.set_envs(proxies=True)
|
124 |
-
stream_response = requests.post(
|
125 |
-
self.request_url,
|
126 |
-
headers=self.request_headers,
|
127 |
-
json=self.request_body,
|
128 |
-
proxies=enver.requests_proxies,
|
129 |
-
stream=True,
|
130 |
-
)
|
131 |
-
status_code = stream_response.status_code
|
132 |
-
if status_code == 200:
|
133 |
-
logger.success(status_code)
|
134 |
-
else:
|
135 |
-
logger.err(status_code)
|
136 |
-
|
137 |
-
return stream_response
|
138 |
-
|
139 |
-
def chat_return_dict(self, stream_response):
|
140 |
-
# https://platform.openai.com/docs/guides/text-generation/chat-completions-response-format
|
141 |
-
final_output = self.message_outputer.default_data.copy()
|
142 |
-
final_output["choices"] = [
|
143 |
-
{
|
144 |
-
"index": 0,
|
145 |
-
"finish_reason": "stop",
|
146 |
-
"message": {
|
147 |
-
"role": "assistant",
|
148 |
-
"content": "",
|
149 |
-
},
|
150 |
-
}
|
151 |
-
]
|
152 |
-
logger.back(final_output)
|
153 |
-
|
154 |
-
final_content = ""
|
155 |
-
for line in stream_response.iter_lines():
|
156 |
-
if not line:
|
157 |
-
continue
|
158 |
-
content = self.parse_line(line)
|
159 |
-
|
160 |
-
if content.strip() == self.stop_sequences:
|
161 |
-
logger.success("\n[Finished]")
|
162 |
-
break
|
163 |
-
else:
|
164 |
-
logger.back(content, end="")
|
165 |
-
final_content += content
|
166 |
-
|
167 |
-
if self.model in STOP_SEQUENCES_MAP.keys():
|
168 |
-
final_content = final_content.replace(self.stop_sequences, "")
|
169 |
-
|
170 |
-
final_content = final_content.strip()
|
171 |
-
final_output["choices"][0]["message"]["content"] = final_content
|
172 |
-
return final_output
|
173 |
-
|
174 |
-
def chat_return_generator(self, stream_response):
|
175 |
-
is_finished = False
|
176 |
-
line_count = 0
|
177 |
-
for line in stream_response.iter_lines():
|
178 |
-
if line:
|
179 |
-
line_count += 1
|
180 |
-
else:
|
181 |
-
continue
|
182 |
-
|
183 |
-
content = self.parse_line(line)
|
184 |
-
|
185 |
-
if content.strip() == self.stop_sequences:
|
186 |
-
content_type = "Finished"
|
187 |
-
logger.success("\n[Finished]")
|
188 |
-
is_finished = True
|
189 |
-
else:
|
190 |
-
content_type = "Completions"
|
191 |
-
if line_count == 1:
|
192 |
-
content = content.lstrip()
|
193 |
-
logger.back(content, end="")
|
194 |
-
|
195 |
-
output = self.message_outputer.output(
|
196 |
-
content=content, content_type=content_type
|
197 |
-
)
|
198 |
-
yield output
|
199 |
-
|
200 |
-
if not is_finished:
|
201 |
-
yield self.message_outputer.output(content="", content_type="Finished")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|