File size: 2,608 Bytes
c4bbff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import gradio as gr
import copy
from llama_cpp import Llama
from huggingface_hub import hf_hub_download  

# huggingface-cli download microsoft/Phi-3-mini-4k-instruct-gguf Phi-3-mini-4k-instruct-q4.gguf --local-dir .
# huggingface-cli download LoneStriker/OpenBioLLM-Llama3-8B-GGUF --local-dir ./llama3-gguf
llm = Llama(
    # model_path="./Phi-3-mini-4k-instruct-q4.gguf",
    model_path="./llama3-gguf/OpenBioLLM-Llama3-8B-Q5_K_M.gguf",
    n_ctx=2048,
    n_gpu_layers=50, # change n_gpu_layers if you have more or less VRAM 
) 

# print("here")
def generate_text(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    temp = ""
    input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n "
    for interaction in history:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "

    output = llm(
        input_prompt,
        temperature=temperature,
        top_p=top_p,
        top_k=40,
        repeat_penalty=1.1,
        max_tokens=max_tokens,
        stop=[
            "<|prompter|>",
            "<|endoftext|>",
            "<|endoftext|> \n",
            "ASSISTANT:",
            "USER:",
            "SYSTEM:",
        ],
        stream=True,
    )
    for out in output:
        stream = copy.deepcopy(out)
        temp += stream["choices"][0]["text"]
        yield temp


demo = gr.ChatInterface(
    generate_text,
    title="llama-cpp-python on CPU",
    description="Running LLM with https://github.com/abetlen/llama-cpp-python",
    examples=[
        ['How to setup a human base on Mars? Give short answer.'],
        ['Explain theory of relativity to me like I’m 8 years old.'],
        ['What is 9,000 * 9,000?'],
        ['Write a pun-filled happy birthday message to my friend Alex.'],
        ['Justify why a penguin might make a good king of the jungle.']
    ],
    cache_examples=False,
    retry_btn=None,
    undo_btn="Delete Previous",
    clear_btn="Clear",
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()