Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import copy | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub.file_download import http_get | |
# huggingface-cli download microsoft/Phi-3-mini-4k-instruct-gguf Phi-3-mini-4k-instruct-q4.gguf --local-dir . | |
# huggingface-cli download LoneStriker/OpenBioLLM-Llama3-8B-GGUF --local-dir ./llama3-gguf | |
# Explicitly create the cache directory if it doesn't exist | |
def load_model( | |
directory: str = ".", | |
model_name: str = "OpenBioLLM-Llama3-8B-Q5_K_M.gguf", | |
model_url: str = "https://huggingface.co/LoneStriker/OpenBioLLM-Llama3-8B-GGUF/resolve/main/OpenBioLLM-Llama3-8B-Q5_K_M.gguf" | |
): | |
final_model_path = os.path.join(directory, model_name) | |
print("Downloading all files...") | |
if not os.path.exists(final_model_path): | |
with open(final_model_path, "wb") as f: | |
http_get(model_url, f) | |
os.chmod(final_model_path, 0o777) | |
print("Files downloaded!") | |
model = Llama( | |
model_path=final_model_path, | |
n_ctx=2000, | |
n_parts=1, | |
) | |
print("Model loaded!") | |
return model | |
# llm = Llama( | |
# # model_path="./Phi-3-mini-4k-instruct-q4.gguf", | |
# # model_path="./llama3-gguf/OpenBioLLM-Llama3-8B-Q5_K_M.gguf", | |
# model_path = hf_hub_download( | |
# repo_id=os.environ.get("REPO_ID", "LoneStriker/OpenBioLLM-Llama3-8B-GGUF"), | |
# filename=os.environ.get("MODEL_FILE", "Llama3-8B-Q5_K_M.gguf"), | |
# ), | |
# n_ctx=2048, | |
# n_gpu_layers=50, # change n_gpu_layers if you have more or less VRAM | |
# ) | |
llm = load_model() | |
# print("here") | |
def generate_text( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
temp = "" | |
input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n " | |
for interaction in history: | |
input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] " | |
input_prompt = input_prompt + str(message) + " [/INST] " | |
output = llm( | |
input_prompt, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=40, | |
repeat_penalty=1.1, | |
max_tokens=max_tokens, | |
stop=[ | |
"<|prompter|>", | |
"<|endoftext|>", | |
"<|endoftext|> \n", | |
"ASSISTANT:", | |
"USER:", | |
"SYSTEM:", | |
], | |
stream=True, | |
) | |
for out in output: | |
stream = copy.deepcopy(out) | |
temp += stream["choices"][0]["text"] | |
yield temp | |
demo = gr.ChatInterface( | |
generate_text, | |
title="llama-cpp-python on CPU", | |
description="Running LLM with https://github.com/abetlen/llama-cpp-python", | |
examples=[ | |
['How to setup a human base on Mars? Give short answer.'], | |
['Explain theory of relativity to me like I’m 8 years old.'], | |
['What is 9,000 * 9,000?'], | |
['Write a pun-filled happy birthday message to my friend Alex.'], | |
['Justify why a penguin might make a good king of the jungle.'] | |
], | |
cache_examples=False, | |
retry_btn=None, | |
undo_btn="Delete Previous", | |
clear_btn="Clear", | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |