File size: 11,274 Bytes
fa90792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import torch
import os

import torch.nn.functional as F
import numpy as np
from audiosr.latent_diffusion.modules.ema import *

from audiosr.latent_diffusion.modules.diffusionmodules.model import Encoder, Decoder
from audiosr.latent_diffusion.modules.distributions.distributions import (
    DiagonalGaussianDistribution,
)
import soundfile as sf

from audiosr.utilities.model import get_vocoder
from audiosr.utilities.tools import synth_one_sample


class AutoencoderKL(nn.Module):
    def __init__(
        self,
        ddconfig=None,
        lossconfig=None,
        batchsize=None,
        embed_dim=None,
        time_shuffle=1,
        subband=1,
        sampling_rate=16000,
        ckpt_path=None,
        reload_from_ckpt=None,
        ignore_keys=[],
        image_key="fbank",
        colorize_nlabels=None,
        monitor=None,
        base_learning_rate=1e-5,
    ):
        super().__init__()
        self.automatic_optimization = False
        assert (
            "mel_bins" in ddconfig.keys()
        ), "mel_bins is not specified in the Autoencoder config"
        num_mel = ddconfig["mel_bins"]
        self.image_key = image_key
        self.sampling_rate = sampling_rate
        self.encoder = Encoder(**ddconfig)
        self.decoder = Decoder(**ddconfig)

        self.loss = None
        self.subband = int(subband)

        if self.subband > 1:
            print("Use subband decomposition %s" % self.subband)

        assert ddconfig["double_z"]
        self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)

        if self.image_key == "fbank":
            self.vocoder = get_vocoder(None, "cpu", num_mel)
        self.embed_dim = embed_dim
        if colorize_nlabels is not None:
            assert type(colorize_nlabels) == int
            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
        if monitor is not None:
            self.monitor = monitor
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
        self.learning_rate = float(base_learning_rate)
        # print("Initial learning rate %s" % self.learning_rate)

        self.time_shuffle = time_shuffle
        self.reload_from_ckpt = reload_from_ckpt
        self.reloaded = False
        self.mean, self.std = None, None

        self.feature_cache = None
        self.flag_first_run = True
        self.train_step = 0

        self.logger_save_dir = None
        self.logger_exp_name = None

    def get_log_dir(self):
        if self.logger_save_dir is None and self.logger_exp_name is None:
            return os.path.join(self.logger.save_dir, self.logger._project)
        else:
            return os.path.join(self.logger_save_dir, self.logger_exp_name)

    def set_log_dir(self, save_dir, exp_name):
        self.logger_save_dir = save_dir
        self.logger_exp_name = exp_name

    def init_from_ckpt(self, path, ignore_keys=list()):
        sd = torch.load(path, map_location="cpu")["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        self.load_state_dict(sd, strict=False)
        print(f"Restored from {path}")

    def encode(self, x):
        # x = self.time_shuffle_operation(x)
        # x = self.freq_split_subband(x)
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z):
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        # bs, ch, shuffled_timesteps, fbins = dec.size()
        # dec = self.time_unshuffle_operation(dec, bs, int(ch*shuffled_timesteps), fbins)
        # dec = self.freq_merge_subband(dec)
        return dec

    def decode_to_waveform(self, dec):
        from audiosr.utilities.model import vocoder_infer

        if self.image_key == "fbank":
            dec = dec.squeeze(1).permute(0, 2, 1)
            wav_reconstruction = vocoder_infer(dec, self.vocoder)
        elif self.image_key == "stft":
            dec = dec.squeeze(1).permute(0, 2, 1)
            wav_reconstruction = self.wave_decoder(dec)
        return wav_reconstruction

    def visualize_latent(self, input):
        import matplotlib.pyplot as plt

        # for i in range(10):
        #     zero_input = torch.zeros_like(input) - 11.59
        #     zero_input[:,:,i * 16: i * 16 + 16,:16] += 13.59

        #     posterior = self.encode(zero_input)
        #     latent = posterior.sample()
        #     avg_latent = torch.mean(latent, dim=1)[0]
        #     plt.imshow(avg_latent.cpu().detach().numpy().T)
        #     plt.savefig("%s.png" % i)
        #     plt.close()

        np.save("input.npy", input.cpu().detach().numpy())
        # zero_input = torch.zeros_like(input) - 11.59
        time_input = input.clone()
        time_input[:, :, :, :32] *= 0
        time_input[:, :, :, :32] -= 11.59

        np.save("time_input.npy", time_input.cpu().detach().numpy())

        posterior = self.encode(time_input)
        latent = posterior.sample()
        np.save("time_latent.npy", latent.cpu().detach().numpy())
        avg_latent = torch.mean(latent, dim=1)
        for i in range(avg_latent.size(0)):
            plt.imshow(avg_latent[i].cpu().detach().numpy().T)
            plt.savefig("freq_%s.png" % i)
            plt.close()

        freq_input = input.clone()
        freq_input[:, :, :512, :] *= 0
        freq_input[:, :, :512, :] -= 11.59

        np.save("freq_input.npy", freq_input.cpu().detach().numpy())

        posterior = self.encode(freq_input)
        latent = posterior.sample()
        np.save("freq_latent.npy", latent.cpu().detach().numpy())
        avg_latent = torch.mean(latent, dim=1)
        for i in range(avg_latent.size(0)):
            plt.imshow(avg_latent[i].cpu().detach().numpy().T)
            plt.savefig("time_%s.png" % i)
            plt.close()

    def get_input(self, batch):
        fname, text, label_indices, waveform, stft, fbank = (
            batch["fname"],
            batch["text"],
            batch["label_vector"],
            batch["waveform"],
            batch["stft"],
            batch["log_mel_spec"],
        )
        # if(self.time_shuffle != 1):
        #     if(fbank.size(1) % self.time_shuffle != 0):
        #         pad_len = self.time_shuffle - (fbank.size(1) % self.time_shuffle)
        #         fbank = torch.nn.functional.pad(fbank, (0,0,0,pad_len))

        ret = {}

        ret["fbank"], ret["stft"], ret["fname"], ret["waveform"] = (
            fbank.unsqueeze(1),
            stft.unsqueeze(1),
            fname,
            waveform.unsqueeze(1),
        )

        return ret

    def save_wave(self, batch_wav, fname, save_dir):
        os.makedirs(save_dir, exist_ok=True)

        for wav, name in zip(batch_wav, fname):
            name = os.path.basename(name)

            sf.write(os.path.join(save_dir, name), wav, samplerate=self.sampling_rate)

    def get_last_layer(self):
        return self.decoder.conv_out.weight

    @torch.no_grad()
    def log_images(self, batch, train=True, only_inputs=False, waveform=None, **kwargs):
        log = dict()
        x = batch.to(self.device)
        if not only_inputs:
            xrec, posterior = self(x)
            log["samples"] = self.decode(posterior.sample())
            log["reconstructions"] = xrec

        log["inputs"] = x
        wavs = self._log_img(log, train=train, index=0, waveform=waveform)
        return wavs

    def _log_img(self, log, train=True, index=0, waveform=None):
        images_input = self.tensor2numpy(log["inputs"][index, 0]).T
        images_reconstruct = self.tensor2numpy(log["reconstructions"][index, 0]).T
        images_samples = self.tensor2numpy(log["samples"][index, 0]).T

        if train:
            name = "train"
        else:
            name = "val"

        if self.logger is not None:
            self.logger.log_image(
                "img_%s" % name,
                [images_input, images_reconstruct, images_samples],
                caption=["input", "reconstruct", "samples"],
            )

        inputs, reconstructions, samples = (
            log["inputs"],
            log["reconstructions"],
            log["samples"],
        )

        if self.image_key == "fbank":
            wav_original, wav_prediction = synth_one_sample(
                inputs[index],
                reconstructions[index],
                labels="validation",
                vocoder=self.vocoder,
            )
            wav_original, wav_samples = synth_one_sample(
                inputs[index], samples[index], labels="validation", vocoder=self.vocoder
            )
            wav_original, wav_samples, wav_prediction = (
                wav_original[0],
                wav_samples[0],
                wav_prediction[0],
            )
        elif self.image_key == "stft":
            wav_prediction = (
                self.decode_to_waveform(reconstructions)[index, 0]
                .cpu()
                .detach()
                .numpy()
            )
            wav_samples = (
                self.decode_to_waveform(samples)[index, 0].cpu().detach().numpy()
            )
            wav_original = waveform[index, 0].cpu().detach().numpy()

        if self.logger is not None:
            self.logger.experiment.log(
                {
                    "original_%s"
                    % name: wandb.Audio(
                        wav_original, caption="original", sample_rate=self.sampling_rate
                    ),
                    "reconstruct_%s"
                    % name: wandb.Audio(
                        wav_prediction,
                        caption="reconstruct",
                        sample_rate=self.sampling_rate,
                    ),
                    "samples_%s"
                    % name: wandb.Audio(
                        wav_samples, caption="samples", sample_rate=self.sampling_rate
                    ),
                }
            )

        return wav_original, wav_prediction, wav_samples

    def tensor2numpy(self, tensor):
        return tensor.cpu().detach().numpy()

    def to_rgb(self, x):
        assert self.image_key == "segmentation"
        if not hasattr(self, "colorize"):
            self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
        x = F.conv2d(x, weight=self.colorize)
        x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
        return x


class IdentityFirstStage(torch.nn.Module):
    def __init__(self, *args, vq_interface=False, **kwargs):
        self.vq_interface = vq_interface  # TODO: Should be true by default but check to not break older stuff
        super().__init__()

    def encode(self, x, *args, **kwargs):
        return x

    def decode(self, x, *args, **kwargs):
        return x

    def quantize(self, x, *args, **kwargs):
        if self.vq_interface:
            return x, None, [None, None, None]
        return x

    def forward(self, x, *args, **kwargs):
        return x