Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,274 Bytes
fa90792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import torch
import os
import torch.nn.functional as F
import numpy as np
from audiosr.latent_diffusion.modules.ema import *
from audiosr.latent_diffusion.modules.diffusionmodules.model import Encoder, Decoder
from audiosr.latent_diffusion.modules.distributions.distributions import (
DiagonalGaussianDistribution,
)
import soundfile as sf
from audiosr.utilities.model import get_vocoder
from audiosr.utilities.tools import synth_one_sample
class AutoencoderKL(nn.Module):
def __init__(
self,
ddconfig=None,
lossconfig=None,
batchsize=None,
embed_dim=None,
time_shuffle=1,
subband=1,
sampling_rate=16000,
ckpt_path=None,
reload_from_ckpt=None,
ignore_keys=[],
image_key="fbank",
colorize_nlabels=None,
monitor=None,
base_learning_rate=1e-5,
):
super().__init__()
self.automatic_optimization = False
assert (
"mel_bins" in ddconfig.keys()
), "mel_bins is not specified in the Autoencoder config"
num_mel = ddconfig["mel_bins"]
self.image_key = image_key
self.sampling_rate = sampling_rate
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.loss = None
self.subband = int(subband)
if self.subband > 1:
print("Use subband decomposition %s" % self.subband)
assert ddconfig["double_z"]
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
if self.image_key == "fbank":
self.vocoder = get_vocoder(None, "cpu", num_mel)
self.embed_dim = embed_dim
if colorize_nlabels is not None:
assert type(colorize_nlabels) == int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.learning_rate = float(base_learning_rate)
# print("Initial learning rate %s" % self.learning_rate)
self.time_shuffle = time_shuffle
self.reload_from_ckpt = reload_from_ckpt
self.reloaded = False
self.mean, self.std = None, None
self.feature_cache = None
self.flag_first_run = True
self.train_step = 0
self.logger_save_dir = None
self.logger_exp_name = None
def get_log_dir(self):
if self.logger_save_dir is None and self.logger_exp_name is None:
return os.path.join(self.logger.save_dir, self.logger._project)
else:
return os.path.join(self.logger_save_dir, self.logger_exp_name)
def set_log_dir(self, save_dir, exp_name):
self.logger_save_dir = save_dir
self.logger_exp_name = exp_name
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=False)
print(f"Restored from {path}")
def encode(self, x):
# x = self.time_shuffle_operation(x)
# x = self.freq_split_subband(x)
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z):
z = self.post_quant_conv(z)
dec = self.decoder(z)
# bs, ch, shuffled_timesteps, fbins = dec.size()
# dec = self.time_unshuffle_operation(dec, bs, int(ch*shuffled_timesteps), fbins)
# dec = self.freq_merge_subband(dec)
return dec
def decode_to_waveform(self, dec):
from audiosr.utilities.model import vocoder_infer
if self.image_key == "fbank":
dec = dec.squeeze(1).permute(0, 2, 1)
wav_reconstruction = vocoder_infer(dec, self.vocoder)
elif self.image_key == "stft":
dec = dec.squeeze(1).permute(0, 2, 1)
wav_reconstruction = self.wave_decoder(dec)
return wav_reconstruction
def visualize_latent(self, input):
import matplotlib.pyplot as plt
# for i in range(10):
# zero_input = torch.zeros_like(input) - 11.59
# zero_input[:,:,i * 16: i * 16 + 16,:16] += 13.59
# posterior = self.encode(zero_input)
# latent = posterior.sample()
# avg_latent = torch.mean(latent, dim=1)[0]
# plt.imshow(avg_latent.cpu().detach().numpy().T)
# plt.savefig("%s.png" % i)
# plt.close()
np.save("input.npy", input.cpu().detach().numpy())
# zero_input = torch.zeros_like(input) - 11.59
time_input = input.clone()
time_input[:, :, :, :32] *= 0
time_input[:, :, :, :32] -= 11.59
np.save("time_input.npy", time_input.cpu().detach().numpy())
posterior = self.encode(time_input)
latent = posterior.sample()
np.save("time_latent.npy", latent.cpu().detach().numpy())
avg_latent = torch.mean(latent, dim=1)
for i in range(avg_latent.size(0)):
plt.imshow(avg_latent[i].cpu().detach().numpy().T)
plt.savefig("freq_%s.png" % i)
plt.close()
freq_input = input.clone()
freq_input[:, :, :512, :] *= 0
freq_input[:, :, :512, :] -= 11.59
np.save("freq_input.npy", freq_input.cpu().detach().numpy())
posterior = self.encode(freq_input)
latent = posterior.sample()
np.save("freq_latent.npy", latent.cpu().detach().numpy())
avg_latent = torch.mean(latent, dim=1)
for i in range(avg_latent.size(0)):
plt.imshow(avg_latent[i].cpu().detach().numpy().T)
plt.savefig("time_%s.png" % i)
plt.close()
def get_input(self, batch):
fname, text, label_indices, waveform, stft, fbank = (
batch["fname"],
batch["text"],
batch["label_vector"],
batch["waveform"],
batch["stft"],
batch["log_mel_spec"],
)
# if(self.time_shuffle != 1):
# if(fbank.size(1) % self.time_shuffle != 0):
# pad_len = self.time_shuffle - (fbank.size(1) % self.time_shuffle)
# fbank = torch.nn.functional.pad(fbank, (0,0,0,pad_len))
ret = {}
ret["fbank"], ret["stft"], ret["fname"], ret["waveform"] = (
fbank.unsqueeze(1),
stft.unsqueeze(1),
fname,
waveform.unsqueeze(1),
)
return ret
def save_wave(self, batch_wav, fname, save_dir):
os.makedirs(save_dir, exist_ok=True)
for wav, name in zip(batch_wav, fname):
name = os.path.basename(name)
sf.write(os.path.join(save_dir, name), wav, samplerate=self.sampling_rate)
def get_last_layer(self):
return self.decoder.conv_out.weight
@torch.no_grad()
def log_images(self, batch, train=True, only_inputs=False, waveform=None, **kwargs):
log = dict()
x = batch.to(self.device)
if not only_inputs:
xrec, posterior = self(x)
log["samples"] = self.decode(posterior.sample())
log["reconstructions"] = xrec
log["inputs"] = x
wavs = self._log_img(log, train=train, index=0, waveform=waveform)
return wavs
def _log_img(self, log, train=True, index=0, waveform=None):
images_input = self.tensor2numpy(log["inputs"][index, 0]).T
images_reconstruct = self.tensor2numpy(log["reconstructions"][index, 0]).T
images_samples = self.tensor2numpy(log["samples"][index, 0]).T
if train:
name = "train"
else:
name = "val"
if self.logger is not None:
self.logger.log_image(
"img_%s" % name,
[images_input, images_reconstruct, images_samples],
caption=["input", "reconstruct", "samples"],
)
inputs, reconstructions, samples = (
log["inputs"],
log["reconstructions"],
log["samples"],
)
if self.image_key == "fbank":
wav_original, wav_prediction = synth_one_sample(
inputs[index],
reconstructions[index],
labels="validation",
vocoder=self.vocoder,
)
wav_original, wav_samples = synth_one_sample(
inputs[index], samples[index], labels="validation", vocoder=self.vocoder
)
wav_original, wav_samples, wav_prediction = (
wav_original[0],
wav_samples[0],
wav_prediction[0],
)
elif self.image_key == "stft":
wav_prediction = (
self.decode_to_waveform(reconstructions)[index, 0]
.cpu()
.detach()
.numpy()
)
wav_samples = (
self.decode_to_waveform(samples)[index, 0].cpu().detach().numpy()
)
wav_original = waveform[index, 0].cpu().detach().numpy()
if self.logger is not None:
self.logger.experiment.log(
{
"original_%s"
% name: wandb.Audio(
wav_original, caption="original", sample_rate=self.sampling_rate
),
"reconstruct_%s"
% name: wandb.Audio(
wav_prediction,
caption="reconstruct",
sample_rate=self.sampling_rate,
),
"samples_%s"
% name: wandb.Audio(
wav_samples, caption="samples", sample_rate=self.sampling_rate
),
}
)
return wav_original, wav_prediction, wav_samples
def tensor2numpy(self, tensor):
return tensor.cpu().detach().numpy()
def to_rgb(self, x):
assert self.image_key == "segmentation"
if not hasattr(self, "colorize"):
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
x = F.conv2d(x, weight=self.colorize)
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
return x
class IdentityFirstStage(torch.nn.Module):
def __init__(self, *args, vq_interface=False, **kwargs):
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
super().__init__()
def encode(self, x, *args, **kwargs):
return x
def decode(self, x, *args, **kwargs):
return x
def quantize(self, x, *args, **kwargs):
if self.vq_interface:
return x, None, [None, None, None]
return x
def forward(self, x, *args, **kwargs):
return x
|